Abstract:Forest gaps are one of the most normal interferences in primary forest ecosystems, and they play an important role in not only aboveground processes but also belowground processes. However, many studies have paid more attention to the effects of forest gaps on aboveground processes. Increasing evidence has demonstrated that forest gaps have a strong effect on mass loss and carbon and nutrient release in litter by redistributing precipitation, light, and other environmental factors. At high latitudes and altitudes, litter decomposition due to forest gaps may be more complex because of seasonal snow cover and freeze-thaw cycles. Theoretically, interception of rainfall and snowfall in the winter by the canopy and canopy shading may cause the hydrothermal dynamics on the forest floor to vary with respect to gap sizes and critical periods. Currently, little information is available on the effects of gap sizes on litter decomposition at different critical periods. In order to understand the effects of forest gaps on litter decomposition in forest ecosystems at high altitudes, litterbags with red birch (Betula albosinensis) and Minjiang fir (Abies faxoniana) foliar litter were incubated on the forest floor in small, medium, and large gaps and the adjacent closed canopy from November 21, 2011 to October 29, 2012. Then, the litterbags were sampled at the periods of onset of soil freezing (OF), soil deep-freezing (DF), soil thawing (TP), early growth (EP), mid-growth (MP), and late growth (LP), and the mass loss was calculated. After a year of litter decomposition, red birch and Minjiang foliar litter lost 27.25-30.12% and 27.04-27.96% mass, respectively. The mass loss of red birch and Minjiang fir foliar litter in the non-growing season accounted for 53.8-60.18% and 50.23-59.09% of the total mass loss, respectively. Gap sizes have strong effects on the mass loss of Minjiang fir and red birch foliar litter, depending on tree species and sampling periods. Forest gaps accelerated the litter decomposition of Minjiang fir, but slowed down the litter decomposition of red birch. Regardless of tree species, forest gaps significantly accelerated the rates of mass loss of foliar litter in the non-growing season (P < 0.05), but significantly lowered them in the growing season (P < 0.05). The rates of mass loss of foliar litter increased with gap sizes in the non-growing season, but decreased with gap sizes in the growing season. Moreover, the rates of mass loss of Minjiang fir foliar litter in the periods of OF, DF, and TP increased significantly with gap sizes (P < 0.05), but the effects on red birch foliar litter were not significant (P > 0.05). In addition, the contribution of litter mass loss at different critical periods to a year of mass loss was in the order of DF > MP > OF > EP > LP > TP. Mass loss of red birch foliar litter in the non-growing season accounted for 60.18%, 54.46%, 55.34%, and 53.83% of the one-year mass loss in large gaps, middle gaps, small gaps, and closed canopy, respectively; similarly, the contributions of mass loss of Minjiang fir foliar litter to the one-year mass loss in the non-growing season were 59.09%, 54.37%, 52.22%, and 50.23%, respectively. These results suggest that forest gaps accelerated the mass loss of foliar litter in the snow-cover season, but slowed down the mass loss in the growing season. The responses of litter decomposition to gap sizes in the snow-cover season were different from those in the growing season, implying that gap sizes could have strong effects on litter decomposition at different critical periods in the coniferous forest ecosystem of alpine regions.