Abstract:Soil mite distribution is closely associated with various agricultural activities in agroecosystems. The effects of organic (ORG), low-input (LOW), and conventional (CON) management practices on soil mite abundance and community structure under greenhouse conditions were determined by conducting an experiment at the Quzhou Experimental Station of the China Agricultural University (36.5°N, 115.0°E), Hebei Province, China. Soil sampling was performed five times between August and December 2012(an entire cucumber growing season) at two soil depths (0-10 cm and 10-20 cm), and each of the management practices was replicated three times. All mite taxa obtained were divided into four trophic groups:fungivorous cryptostigmatic, fungivorous non-cryptostigmatic, nematophagous, and predaceous mites. Shannon-Wiener (H') and dominance (λ) indices were calculated to evaluate mite diversity. The results revealed that the average mite abundance according to sampling date and depth in the ORG, LOW, and CON management practices was 10368 ind/m2, 11180 ind/m2 and 7918 ind/m2, respectively. In all the three greenhouses, the vertical distribution of soil mites showed surface-aggregation, and the mean abundance of mites in the 0-10 cm soil depth (18707 ind/m2) was 20-fold that in the 10-20 cm depth (937 ind/m2). Statistical analyses indicated that the management practices only significantly impacted the relative abundance of fungivorous non-cryptostigmatic and nematophagous mites, but no significant effect was found on the abundance of soil mites, the relative abundance of various suborders of mites, and the relative abundance of fungivorous cryptostigmatic and predaceous mites. The total mite abundance and the abundance of the various trophic groups fluctuated to different degrees during the sampling period; they also differed among the greenhouses. A strong fluctuation in mite density was found under low-input management practice, with the highest numbers noted in October and September for the 0-10 cm and 10-20 cm soil depths, respectively. The total mite abundance in the organic greenhouse increased gradually over time, and that under conventional management practices exhibited a slight fluctuation, with the highest number observed in November. Fungivorous non-cryptostigmatic mites were dominant in most soils except in the 10-20 cm depth of conventional soils; nematophagous mites were the subdominant trophic group in both organic and low-input soils. Acaridae was the most abundant family (mean=38.7%). Other dominant mite taxa included Laelapidae (13.1%), Parholaspididae (10.4%), Uropodidae (6.4%), and Microdispidae (6.6%). Mite richness decreased in the following order:ORG (26) > LOW (21) > CON (18); however, no significant effect was observed in the H' or λ indices. One-way analysis of variance of H' and λ in the 0-10 cm depth only revealed a significant difference in December, suggesting that H' was significantly higher under LOW than under ORG management practices. In general, the highest H' value was observed in November, and the λ index was the lowest in this month. Thus, under greenhouse conditions in which the soil environments are highly disturbed and receive high inputs, management practices had small effects on both soil mite abundance and community structure.