施肥和杂草多样性对土壤微生物群落的影响
作者:
作者单位:

河南大学生命科学学院 河南开封,河南大学生命科学院 河南开封,河南大学生命科学学院 河南开封,河南大学生命科学学院 河南开封,河南大学生命科学学院 河南开封,河南大学生命科学学院 河南开封

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31070394);河南省科技攻关项目(142102110034)


Effects of fertilization and diversity of weed species on the soil microbial community
Author:
Affiliation:

College of Life science,Henan University,College of Life science,Henan University,College of Life science,Henan University,College of Life science,Henan University,College of Life science,Henan University,College of Life science,Henan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    常年使用化肥和除草剂以及农业新技术的高投入,使我国粮食主产区耕地出现了生产力降低、土壤生物多样性失调和污染严重等生态问题。采用磷脂脂肪酸(PLFA)方法来评估施肥和杂草多样性对冬小麦土壤微生物群落结构的影响。实验采用裂区实验设计,施肥作为主因素,杂草多样性作为次因素。化肥和有机肥两个施肥处理,在两个施肥处理中进行杂草多样性设置,实验盆中心种植作物(冬小麦8株),四周种植杂草(8株),杂草种类选择野燕麦、苜蓿、菊苣、播娘蒿。杂草多样性处理设为0、1、2、4种杂草处理,0种杂草处理仅种植作物,有6盆;1种杂草处理为每盆种1种杂草,有12盆;2种杂草处理为每盆种两种杂草,有12盆;4种杂草处理为每盆种4种杂草,有6盆。结果表明:在两种施肥处理中,增加杂草多样性显著增加了土壤碳氮比和pH值,碳氮比都是在4种杂草处理中最高。施化肥处理中,增加杂草多样性显著影响真菌和细菌比,真菌和细菌比在4种杂草处理中最大,显著高于0、1、2种杂草处理。在施有机肥处理中,增加杂草多样性显著影响阳性菌和阴性菌比,阳性菌和阴性菌比在0种杂草处理中最低,显著低于1、2、4种杂草处理。在两个施肥处理中,土壤碳氮比与各类群微生物量显著相关,杂草多样性通过改变土壤碳氮比改变微生物群落构成,并且微生物群落结构转变方式不同。

    Abstract:

    Farmland ecosystems are primary producers of food, feed, fiber, and other natural products. Species diversity constitutes an important foundation in farmland ecosystems, but human activities are greatly accelerating the loss rate of species. Considerable evidence shows that agricultural management threatens biodiversity and negatively affects species richness and abundance of taxa. In major grain-producing areas, reductions in productivity and soil biodiversity and serious pollution problems occur as a result of fertilizer and pesticide use as well as new agricultural technologies. Conservation of biological diversity is considered to be an important strategy to reduce risks to agriculture in the future. Phospholipid fatty acid (PLFA) analysis was employed to examine the effects of fertilization and diversity of weed species on soil microbial community structure in a winter wheat plantation. The experiment used a split-plot design and was established in October 2010. Two fertilization treatments (including chemical fertilizer and organic manure) were applied to the main plots and diversity of weed species (0, 1, 2 and 4 species) were sown in the sub-plots. Wheat was grown in the center of plots and weeds were grown around the wheat plants (all eight plants). The weed species were Avena fatua, Medicago sativa, Cichorium intybus, and Descurainia sophia. For the zero species weed treatments, six plots were grown of wheat plants only. For the 1-species weed treatments, one kind of weed was grown with the wheat in 12 plots. For the 2-species weed treatments, two weed species were grown with the wheat in 12 plots. For the 4-species weed treatments, four weed species were grown with the wheat in six plots. Increased weed diversity significantly increased the soil carbon(C) : nitrogen(N) ratio and pH in both fertilizer treatments, and the C : N ratio was the highest in the 4-species treatment. In the chemical fertilizer treatment, weed diversity significantly affected the fungi:bacteria ratio, which was highest in the 4-species treatment. Fungal and mycorrhizal fungal biomass were lowest in the 1-species treatment (1.0 nmol/g dry soil and 0.4 nmol/g dry soil, respectively), and significantly lower than in the 4-species treatment (1.3 nmol/g dry soil and 0.6 nmol/g dry soil, respectively). In the organic manure treatments, the gram-positive:gram-negative bacterial ratio was lowest in the 0-species treatment compared with the 1-, 2- and 4-species treatments. Mycorrhizal fungal biomass was lowest in the 1-species treatment (1.5 nmol/g dry soil), and significantly lower than in the 4-species treatment (1.8 nmol/g dry soil). In both fertilizer treatments, weed species diversity affected microbial community composition by changing the soil C : N ratio, which was correlated with biomass of various functional groups of soil microbes. Moreover, the shift of the microbial community composition in a different way. Plant species richness is an important factor affecting microbial interactions. Despite the small differences in microbial community structure between different weed diversity treatments, these minor differences will have an important cumulative effect on microbial-driven ecosystem processes. For legumes, Asteraceae, Poaceae, and cruciferous weed species treatments, species specificity had no significant effects on soil microbial biomass and taxa. Thus, species diversity affects microbial community composition. We recommend applying manure to increase soil microbial biomass in farmlands and maintain diversity of weed species. This will lead to changes in microbial community structure to regulate and improve soil ecosystem stability in chemically fertilized farmland. This study is of practical and theoretical significance for 1) our understanding of how plant diversity affects soil microbial community composition and the development of soil ecosystem health, 2) exploring microbial ecological function in maintaining soil ecosystem stability, and 3) revealing plant-soil-microbial interactions and feedback mechanisms.

    参考文献
    相似文献
    引证文献
引用本文

孙锋,赵灿灿,何琼杰,吕会会,管奕欣,谷艳芳.施肥和杂草多样性对土壤微生物群落的影响.生态学报,2015,35(18):6023~6031

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: