Abstract:The karst region in southwest China is the world's largest geology-controlled eco-environment. This area's basic characteristics include: the shortage of soil resources; low vegetation cover and highly diverse microhabitats. The historical influence of human direct/indirect disturbances has negatively affected the karst forest causing different degrees of degradation. This has resulted in the forest forming coexisting communities at different stages or forms reflecting different successional stages. Therefore, vegetation restoration/reconstruction and the comprehensive control of karst rock desertification has rapidly developed in this region of southwest China. However, the role of karst ecosystems in the global carbon-cycle under different vegetation types remains unclear. The quantification of karst areas for carbon storage and distribution is important in studies on karst carbon cycling. To quantify carbon storage in karst areas we used plot inventory, harvest methods and an allometric approach to measure carbon density and allocation at four different vegetation types including grasslands, shrublands, secondary and primary (climax community)forests located in depressions between karst hills. In addition, we investigated the effect of different parameters such as soil physicochemical properties and biological characteristics on soil carbon. The results showed that the total carbon storage in grasslands, shrublands, secondary and primary forest were 133.84, 160.79, 179.08 and 261.24 Mg C/hm2, respectively, with the vegetation developing into a higher stage. The storage of carbon in vegetation was 5.02, 6.59, 20.87 and 60.20 Mg C/hm2 (grasslands, shrublands, secondary and primary forests, respectively) accounting for 3.75, 4.10, 13.89 and 23.04% of the total carbon storage in grassland, shrublands, secondary and primary forest, respectively. The carbon storage in the litter for grasslands, shrublands, secondary and primary forests was 1.76, 0.95, 2.60 and 0.82 Mg C/hm2, respectively, contributing 0.32-1.45% to the total carbon density. The soil organic carbon content decreased with increasing soil depth at different stages of vegetation restoration, with the carbon storage of mineral soils at 127.06, 153.25, 151.61 and 200.21 Mg C/hm2, (grassland, shrub, secondary and primary forest respectively) This accounted for 94.93% (grassland) 95.31% (shrubs), 84.66% (secondary forest) and 76.64% (primary forest) of the total carbon storage. The soil carbon pool increased with vegetation development into a higher stage, but showed a proportional decrease with restoration. The underground carbon content was higher compared with that above-ground, while the proportion of carbon storage above-ground gradually increased. However, the underground carbon content decreased from grasslands to primary forest. Correlation analysis showed a significant positive or negative linear association between soil carbon content, carbon storage, soil bulk density and soil depth. In the depressions between the karst hills, the calcareous soil organic carbon content showed a significant association with water-stable aggregation (< 0.25, 0.25-0.5, 0.5-1, 1-2, 2-5, 5-8, >8 mm). Soil nitrogen was the main factor affecting soil organic carbon content. Fine roots (< 2 mm) and soil microorganism showed a significant role in organic carbon accumulation in calcareous soil. In the karst region of southwestern China, the carbon sequestration potential is significant under the conditions of reduced human disturbance and reasonable management strategies promoting rapid vegetation recovery, ecological reconstruction and increased carbon storage.