Abstract:Dissolved organic carbon (DOC) is a mixture of organic compounds with varying molecular sizes and weights. In forest ecosystems, litterfall is a major aboveground resource of DOC, which supplies soils with carbon as a crucial component of terrestrial biogeochemical cycles. During the migration of litterfall-derived DOC from topsoils to subsoils, soils might retain, transform, or release DOC, depending on the chemical nature of DOC and its interactions with soil surfaces. These physicochemical processes contribute considerably to soil organic carbon (SOC) accumulation. It is generally accepted that soil properties have a great influence on the interaction between soil surface and DOC, with Fe/Al oxides constraining DOC losses and high SOC content being usually negatively correlated to DOC sorption. However, an inconsistency still remains regarding the extent to which soils properties impact DOC movement. In some cases topsoils rich in SOC might demonstrate higher DOC retention capacity. Although subsoils with abundant Fe/Al oxides are considered to have a stronger DOC retention capacity, relatively lower SOC content is often found in subsoils, and direct evidence for their higher carbon sequestration potential is rare. One reason for this maybe the amount of DOC from aboveground litterfall, which is not sufficient and little DOC can reach subsoils. Another reason might be that highly sorptive DOC is preferentially absorbed by topsoils, and DOC that reaches subsoils has a weak affinity for soil surfaces. Supplying individual soil horizons with a common DOC solution is thus a good way to differentiate their carbon sequestration capacities. Natural Castanopsis carlesii forests are dominant evergreen broad-leaf forests in mid-subtropical China, and interaction between litterfall derived DOC and red soil (Ferralic Cambisols, World Reference Base) is now recognized as one of the most important mechanisms of C sequestration in this region. To solve inconsistencies about factors controlling DOC translocation in soils and to provide direct information to differentiate carbon sequestration potential between soil horizons, a 200-year-old natural Castanopsis carlesii forest without human interference was selected for undecomposed litter collection and soil sampling at the depth of 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm from each of the three profiles in the site. After extracting DOC from the collected litter with ultrapure water, we supplied individual soil cores with the common DOC in the laboratory. We not only analyzed the influences of soil properties on DOC interception, but also studied the changes in structural composition of DOC before and after leaching. The results showed that: (1) DOC interception in subsoils was greater than that in topsoils. Hydrophilic and hydrophobic DOC competed for binding sites on soil surfaces, and aromatic compounds and macromolecular substances of hydrophobic components were preferentially adsorbed by soils; (2) infrared spectrum suggested that hydrophobic materials such as aromatic substances and ethers were much more ready to be adsorbed than alkane materials, while indigenous hydrophilic substances such as phenols, alcohols could be displaced by hydrophobic components of DOC; (3) there was significant positive correlation between DOC interception and the content of clay and free iron oxide and significant negative correlation between DOC interception and the content of sand and soil organic carbon. Soil organic carbon content was the key factor affecting DOC interception in different soil horizons in natural Castanopsis carlesii forest.