Abstract:The urban thermal environment has become the subject of considerable attention in the field of researchinto the eco-environmental effects of cities. Research into the laws governing the evolution of the urban thermal environment could contribute to the mitigation of the negative effects of the urban heat island (UHI) and promote the sustainable development of cities. This paper analyzed the spatiotemporal changes of the urban thermal landscape in Changsha, China. Four Enhanced Thematic Mapper Plus thermal images of the urban center of Changsha, taken in the same month in 2004 and 2010, were used to retrieve the brightness temperature, which was then classified into five temperature regions: low, sub-middle, middle, sub-high, and high. The landscape types of the urban center of Changsha in both 2004 and 2010 were classified based on land use data. Landscape metrics were used to quantify the spatiotemporal changes of the urban thermal landscape and the underlying surface pattern. By combining moving window and gradient analyses, the spatial changes of the urban thermal landscape pattern in Changsha from 2004 to 2010 were established and the evolution of the thermal landscape was analyzed from 16 directions. Zonal statistics were applied to investigate the changes of various urban landscape patterns under different thermal landscape ranks, which clarified the relationship between the spatial pattern and composition of the urban landscape and the spatial variation of surface temperature on a landscape scale. Based on this work, a number of conclusions were drawn. 1) Following the rapid urbanization of Changsha, the districts of the UHI expanded and became increasingly decentralized. The area of the UHI increased by 15.01 km2 in 2010 in comparison with 2004; the increase was largely distributed in new industrial parks such as Jinxia, Yuelu, and Xinsha. 2) There was an obvious spatial variation of thermal landscape pattern on the landscape scale in the center of Changsha. From the center to the north, east, and south, the Patch Density, Shannon's Diversity Index, and Perimeter-Area Fractal Dimension of the thermal landscape increased gradually, coupled with fluctuations of different amplitudes. In the other words, the thermal landscape has tended to become more fragmented and diversified, and the landscape shape has become more complex from the downtown area to the suburbs. However, the converse is true of the landscape pattern in the west. 3) Different shapes and spatial arrangements of landscape types exhibited different influences on the surface thermal environment; thus, the characteristics of the thermal landscape were changed. The greater the concentration of cropland and forested land in the thermal landscape, the more significant the surface cooling effect. Conversely, the higher surface temperatures were observed when the dominance of urban land was greater, degree of cohesion higher, and landscape shape simpler. Furthermore, the UHI effect of the study area is expected to become more remarkable. The changes of the underlying surface pattern exhibited remarkable influence on the local thermal environment and therefore, greater attention should be paid to the rational distribution of cropland and forested land in order to relieve the effects of the urban heat environment.