Abstract:The dynamic change of soil total nitrogen density and storage is very important for optimization of nitrogen fertilizer management and water eutrophication. In this study, four counties, namely Minhou, Tongan, Wuping and Yongding, located in different areas of Fujian Province, China, were selected as typical study areas. Based on the data of field measurements at 11087 sampling sites in 1982 and 1616 sampling sites in 2008, scattered in these four counties, a 1:50000 soil database was carried out of dynamic changes in total nitrogen density and storage in the farmlands of Fujian Province during the 1982-2008 year, using the scaling up method. Results show that nitrogen was enriched obviously, with nitrogen density and nitrogen storage increased by N 0.08 kg/m2 and 1.22 Tg in entire Fujian Province, respectively. The degree of N enrichment had a great discrepancy in different soil types. The incresed of nitrogen density in purplish soil, acid purplish soil and liver soil was the highest in soil group, soil subgroup and soil genus, respectively, with total nitrogen density increased by N 0.18, 0.18 and 0.18 kg/m2, respectively. By contrast, the decresed of nitrogen density in latosolic red soils, submergenic paddy soils and latosolic soil was the highest in soil group, soil subgroup and soil genus, respectively, with total nitrogen density decreased by N 0.01, 0.01 and 0.01 kg/m2, respectively. The incresed of nitrogen storage in paddy soils, percogenic paddy soils and yellow mud field was the highest in soil group, soil subgroup and soil genus, respectively, with total nitrogen storages increased by N 1.24, 0.80 and 0.71 Tg, respectively. By contrast, the decresed of nitrogen storage in latosolic red soils, latosolic red soils and grey sandy mud field was the highest in soil group, soil subgroup and soil genus, respectively, with total nitrogen storages decreased by N 0.13, 0.13 and 0.08 Tg, respectively. Therefore, it is necessary to help famers on scientific fertilization according to the enrichment of various soil type, and to save resources and reduce environmental problems caused by the nitrogen losses.