Abstract:It is an important ecological principle and a representative mode of bioengineering techniques for side slope protection in superhighway those using localization shrubs to reconstruct plant communities. These native plant species have higher ecological adaptations, and their foliage can cover the whole slope in a rather transitory growth period. Although vegetation interception, power reduction, controlling of slope runoff, root anchorage and reinforcement are fundamental pathway to control effectively the development of soil erosion for bioengineering techniques, the species of pioneer plants, richness and their community characteristics are closely related to the benefit of soil and water conservation of artificial vegetations. In this case, taking Chengyu expressway (G85) in Yongchuan region and two typical vegetation modes, i.e. Neosino calamus affinis + Buchloe dactyloides and Amorpha fruticosa + Festuca rubra, which always used to be a feasibility of the establishment for slope protection in hilly areas in southwest China as the example and foundation, two localization shrubs, i.e. Indigofera pseudotinctoria Mats. and Vitex negundo, and two herbs, i.e. Cynodon dactylon and Miscanthus sinensis, were chose to plant in given modes and growth proportion in the beginning of reconstructing slope vegetation, their characteristics of slope runoff and erosion sediment in rainy seasons during years ranging from 2010 to 2012 were investigated in the slope plot experiments, and the difference among the slope rainfall-induced processes of infiltration, runoff generation, erosion and sedimentation was analyzed. Results that showed: 1) the pioneer plants richness could affect accumulation of vegetation biomass and period of the turf-establishment evidently, and the more abundant the pioneer plant species are in the beginning of reconstructing plant communities, the shorter their period of the turf-establishment would be And the more the vegetation biomass accumulated in the slope plot would be; 2) the richness of pioneer plants closely related to the diversity of plant species in communities with determination coefficient in excess of 0.954. Under the same succession level, the more abundant pioneer species is, the higher the diversity of plant species including the plant species richness, Shannon-wiener index and Pielou index in communities would be; 3) there was a positive correlation between the capacity of soil and water conservation of vegetations and the diversity of plant species in communities with determination coefficient in excess of 0.995(P < 0.05), and the higher the diversity of plant species is, the stronger the capacity of soil and water conservation would be, then the smaller their runoff coefficient occurred in slope plots, and the lower the soil erosion modulus originated from the given slopes, too. These results suggested a feasible way for the establishment of high efficiency for ecological slope protection by means of increasing the pioneer plant species richness in the beginning of reconstructing slope vegetation; especially when there were the same side slope conditions, seed quantity and planting measures.