Abstract:Based on the small watershed technique and the located observation method, the hydrology data collected of the precipitation, penetrate the canopy water, surface and underground runoff, and determine its nutrient content, which were used for analyzing the nutrient dynamic in hydrologic process on the successive rotations of Chinese fir plantations at near mature forest. The replanting its purpose to reveal functional differences in the two generations of Chinese fir in biogeochemical cycling of nutrients, and study the problem of declining productivity even planted fir plantations provide ideas and evidence. The results showed that the nutrient concentrations in precipitation of the second generation forest was 20.30%-39.64% higher than that in first-generation forest, which accounted in total for 38.52% more input of nutrients in second generation than that in the first generation forest. The nutrient concentrations in the through fall in the forest of the first and the second generation was relatively 4.149-4.895 g/kg and 4.271-5.605 g/kg higher than that in the corresponding atmospheric precipitation, respectively. Rain canopy leaching of nutrients,which the nutrient content was 2.94% to 21.37% higher in the second generation forest than that in the first generation forest after leaching through the canopy. There was not significantly different between the nutrient concentrations in surface runoff of the first and that in the second generation forest. The nutrient concentrations subsurface runoff of second generation forest, however, was 48.06% -78.87% higher than that in the first generation forest, which induced the runoff output in the runoff, the second generation forest was 1.58 to 2.61 times more than that in the first generation forest. The nutrient geochemical rate was 26.75% to 29.95% in the first generation forest, while in the second generation forest the nutrient geochemical cycle was 37.24% to 47.43%, and The nutrient geochemical cycle was 3.3 to 3.7 years in the first generation forest, while was 2.1 to 2.7 years in the second generation forest. The nutrient loss rate of the second generation forest was from 1.30 to 1.72 times higher than that in the first generation forest, and the nutrient accumulation rate in the second generation forest was from 73.57% to 87.14% of that in the first generation forest. As to the retention and utilization in the input of nutrients from the outside, the nutrient retention and utilization efficiency of the second generation forest was lower than that of the first generation forest.