Abstract:Apple replant disease (ARD) has been reported from all major fruit-growing regions of the world. ARD is a serious problem in about half of old orchard sites surveyed, with typical symptoms including stunted above- and below-ground tree growth, necrosis of feeder roots, water stress and nutrient deficiencies. The etiology of ARD is complex and causal agents vary among different sites and regions. In most sites, biotic factors seem to be prevalent, including nematodes, bacteria, actinomycete, oomycetes and fungi species thought that Pratylenchus penetrans was the primary nematode species involved in ARD. Although several bacterial genera and species have been associated and suggested as being involved in ARD, most bacteria likely impaired plant at inordinately high densities. Evidence for the involvement of actinomycetes in ARD is circumstantial. However, most researches demonstrated fungal and oomycete genera were the main reason for apple replant disease, i.e. fungal genera: Fusarium, Rhizoctonia, Cylindrocarpon; oomycete genera: Phytophthora, Pythium. To investigate the spatial structure of soil fungal community structure in replanted orchards, three replanted orchards in Ciyao, Daolang and Jincheng town were used to take soil samples, which were collected from 0-30 cm and 30-60 cm depth of the row, inter-row and tree hole, respectively. T-RFLP (Terminal Restriction Fragment Length Polymorphism) was applied in the analysis of soil fungal diversity. Based on the T-RFLP pattern differences, diversity index analysis, cluster analysis and principal component analysis (PCA) were combined to do the further analysis of soil fungal diversity from different orchards. The results indicated that soil fungal diversity differed in three orhcards, Shannon diversity index, Pielou evenness index and Simpson index in all samples were between 0.43-2.47, 0.17-0.85 and 0.12-0.81, respectively. The highest Margalef richness index (R=4.55) was observed at 0-30 cm soil layer of tree hole in Jincheng and the lowest value (R=0.77) was obtained at 30-60 cm soil layer of tree inter-row in Ciyao. In all investigated sites and soil layers, original tree hole showed the highest diversity index, evenness index, richness index and the lowest Simpson index. Soil fungal diversity index, evenness index, richness index of 0-30 cm soil layer were higher than those of 30-60 cm soil layer; however, Simpson index expressed a reverse trend. PCA and cluster analysis indicated that soil fungi of Ciyao, Daolang and Jincheng formed independent community structure, respectively, and these communities could adapt to their own specific soil environment and became the dominant population.