青岛市不同功能区冬季空气微生物群落代谢与多样性特征
作者:
作者单位:

青岛理工大学,青岛理工大学,青岛理工大学,青岛理工大学,青岛理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31170509)


Metabolic characteristics and community diversities of airborne microbes at different functional regions in Qingdao in winter
Author:
Affiliation:

Institute of Environment and Municipal Engineering,Qingdao Technological University,Institute of Environment and Municipal Engineering,Qingdao Technological University,Institute of Environment and Municipal Engineering,Qingdao Technological University,Institute of Environment and Municipal Engineering,Qingdao Technological University,Institute of Environment and Municipal Engineering,Qingdao Technological University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    选取青岛市5个功能区(市区街道、海滨区域、饮用水源地、垃圾填埋场和人工湿地污水处理系统),采用SAS ISO100空气浮游菌采样器于2013年冬季采集空气微生物样品,应用BIOLOG方法分析空气微生物群落代谢功能多样性,阐明群落代谢与环境相关性。结果表明,不同功能区空气微生物群落碳源代谢强度存在差异,代谢稳定时,海滨区域和饮用水源地样品平均光密度值(AWCD)分别为0.302、0.210,而人工湿地、市区街道及垃圾填埋场分别为0.063、0.025和0.034,海滨区域和饮用水源地空气微生物群落碳源代谢强度明显高于其他功能区。不同功能区空气微生物群落Shannon指数和Simpson指数接近,但海滨区域和饮用水源地McIntosh指数明显高于其他功能区。海滨区域和饮用水源地空气微生物群落碳源代谢类型丰富,代谢水平高,人工湿地、市区街道和垃圾填埋场碳源代谢类型单一,代谢水平低。5个功能区空气微生物群落碳源代谢差异呈现区域性,分异代谢差异的主要是羧酸类碳源。风速、温度、湿度等非生物因素对空气微生物群落碳源代谢具有不同程度影响,且不同功能区主导非生物因素存在差异。BIOLOG方法可以提供大量多维数据,能够分析样品间微生物群落碳源代谢差异,客观、全面表征空气微生物群落碳源代谢多样性特征,是研究空气微生物群落功能多样性较理想的方法之一。

    Abstract:

    Airborne microbes are major biological components of the ecosystem that have important ecosystem functions, affect human health and air pollution, and are key indicators of air quality. To determine the metabolic characteristics and community diversity of airborne microbes in different functional regions of Qingdao in winter, sampling sites were set up in five different functional regions (urban streets, a coastal area, drinking water source area, municipal landfill, and artificial wetlands). Airborne microbes were then collected using an SAS ISO100 air sampler in January 2013 and their carbon source metabolic characteristics, functional diversity, and relationship with environmental factors were systematically analyzed by the BIOLOG method. The results revealed significant differences in carbon metabolic profiles of air microbial communities from the five locations. When metabolism was stable, the average well color developments of samples from the coastal area and drinking water source area were 0.302 and 0.21, respectively, whereas those of artificial wetlands, urban streets, and municipal landfill were 0.063, 0.025, and 0.034, respectively. Therefore, the levels of carbon metabolism in the coastal area and drinking water source area were higher than those at other locations. The Shannon indexes and Simpson indexes at the five different functional regions were similar. However, the McIntosh indexes at the coastal area and drinking water source area were higher than those at other locations. Overall, the microbial diversity and dominant species differed among functional regions, but microflora was distributed more evenly in the coastal area and drinking water source area. Among the five locations, carbon catabolic types and levels in the coastal area and drinking water source area were richer and higher than those in the artificial wetlands, urban streets, and municipal landfill. Overall, the airborne microbes in various functional areas had high carbohydrate and carboxylic acid metabolism, and air microbial communities in the coastal and drinking water source areas had better ability to metabolize polymers, carbohydrates, carboxylic acids, and amino acids than those in the artificial wetlands, urban streets, and municipal landfill. The characteristics of carbon metabolism revealed regional differences that were mainly caused by carboxylic acids. Specifically, urban streets, municipal landfills, and artificial wetlands had similar metabolic characteristics, and could be classified together. Additionally, coastal and drinking water source areas had different characteristics, and could be classified respectively. Environmental factors such as wind speed, temperature, and humidity may affect carbon utilization to a certain degree; however, the dominant factors will differ among environments. The results of canonical correspondence analysis (CCA) showed that wind speed and the carbon metabolism of the coastal area and drinking water source area were positively correlated, while they were negatively correlated with temperature and humidity. However, urban streets, municipal landfill, and artificial wetlands were positively correlated with temperature and humidity and negatively correlated with wind speed. The BIOLOG method could provide a large amount of multi-dimensional data, compare carbon metabolic characteristics of the microbial community between samplers, and reflect characteristics of the carbon metabolic diversity of airborne microbes objectively and generally, making it an ideal method for studying functional diversity of airborne microbes.

    参考文献
    相似文献
    引证文献
引用本文

吴等等,宋志文,徐爱玲,郑远,夏岩.青岛市不同功能区冬季空气微生物群落代谢与多样性特征.生态学报,2015,35(7):2277~2284

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: