Abstract:The field experiment was conducted to investigate the effects of seeding rate and root pruning of winter wheat (Triticum aestivum L.) at different growth stages on spatiotemporal root distribution, soil water consumption and grain yield in Loess Plateau. The cultivar used in the experiment was ‘Changwu 135’, which is widely cultivated in the region. There were four seeding rate treatments: SR1, SR2, SR3 and SR4 in corresponding to 180, 225, 280 and 340 plants m-2, respectively, and the SR2 was the seeding rate in the farmer field; in conjunction with three root pruning treatments: W (root pruning in the over-wintering period), S (root pruning at the spring-growth stage), B (root pruning in the over-wintering period and root pruning at the spring-growth stage), with the un-pruned wheat plants as control (CK). The results showed that the total root weight of winter wheat increased with the increase in seeding rate at returning green, booting and anthesis stages; root pruning significantly reduced the total root weight in each growth stage, with the order of CK > W > S > B. The similar trend of total root length was also observed in seeding rate and root pruning treatments. The most difference of total root weight and total root length among each treatment was observed at the depth of 0-20 cm soil layer. Higher seeding rate led to higher dry root weight density (DRWD) and root length density (RLD) at the depth of 0-20 cm. Root pruning reduced the distribution of DRWD and RLD at 0-20 cm soil depth at returning green, booting and anthesis stages, but increased the DRWD and RLD at the depth of 60-100 cm soil layers at anthesis. The soil water consumption increased with increasing seeding rate during whole growing season, whereas the root pruning treatments significantly reduced the soil water consumption when compared with the control. Grain yield and water use efficiency obviously increased as the seeding rate increased. The grain yield of root pruning treatments were significantly higher than that of control, and greatest yield was observed in W. The water use efficiency (WUE) was improved by the root pruning treatments. Therefore, the grain yield of winter wheat could be potentially improved by root pruning at over-wintering period. Considering the possible economic benefits, we suggests that higher seeding rate combined with root pruning during the over-wintering period, for winter wheat in rainfed agricultural region of dry land, can ensure greater grain yield and availability of water.