Abstract:In recent years, drought events in Honghu lake have shown a significant increasing trend, which has had a tremendous impact on local ecological and agricultural production. We conducted an analysis based on Honghu's hydrology and land-use data over the past 30 years and climate data from 1960 to 2011, using the water balance principle and statistical methods. The results showed that the Honghu water resource is most vulnerable in the spring. The water level at this time of year is just slightly higher-with 2 to 3 times the mean standard error-than that in winter, which leads to frequent and severe drought in Honghu. With global climate change, however, the local annual precipitation is increasing; the rainfall is concentrated in summer and is less in spring, especially in spring drought years, with a decreasing rate of 12.57 mm/10a, significant at 0.1. The precipitation in summer increases, but it is negatively correlated with the water level in the following spring, which means that an increase in precipitation in summer can aggravate the severity of the spring drought. The Honghu lake water level in May is highly dependent on spring rainfall, with a rate of 0.36 m/100 mm. Over the past 20 years, the agricultural structure in Honghu has changed significantly, with increasing aquaculture areas and decreasing dry crop areas. The aquaculture area of the two counties surrounding Honghu has increased nearly 7 times and, because of this, the agricultural irrigation water requirement has increased by more than 414 million cubic meters in the case of low rainfall, which is equivalent to 45% of the total water in Honghu lake's annual income. Increasing aquaculture consumes much of the water resource in spring and the coefficient between aquaculture and water level of Honghu is about -0.158 m/104 hm2 with a correlation coefficient of -0.4954, which is significant at 0.1. Human activities, especially excessive aquaculture and climate change, are the main reason for the increasing frequency and severity of spring drought in Honghu, with aquaculture having the greatest impact. In order to maintain Honghu's ecological function and reduce the drought effects, measures should be taken to change both the agricultural structure and the way in which land is used.