Abstract:Since the industrial revolution in the 18th century to date, carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels has elevated the atmospheric CO2 concentration from approximately 280 ×10-6 to 394×10-6. About a quarter or one third of the anthropogenic CO2 (several billion tons per year) has been absorbed by the ocean and subsequently lowers pH of seawater, which has been firstly termed as "ocean acidification" in 2003. Oceanic uptake of atmospheric CO2 not only acidifies the seawater, but also lowers the carbonate concentration and then causes a decrease in the saturation state (Ω) of calcium carbonate. The saturation states of calcite, aragonite, and high-magnesium calcite are critical to the formation of supporting skeletal structures or shells in many marine invertebrates. Therefore, theoretically the CO2-driven ocean acidification will affect all marine invertebrate species through altering the chemistry property of the habitat that they live in and subsequently poses a great threaten to marine invertebrates. Marine invertebrates are one of the important components in marine ecosystem which play critical roles in both material and energy flow. Moreover, many marine invertebrates such as edible mollusks, crustaceans, and echinoderms are traditional aquaculture species which are economical significant. In this circumstance, knowledge about the impacts of ocean acidification on marine invertebrates will definitely contribute to a comprehensive understanding of the mechanism underlying the ocean acidification effects, the precise prediction of the damage, and the aquaculture strategy designing to handle with ocean acidification in near future. Though ocean acidification has only been studied for approximately ten years, a great deal of researches have demonstrated that ocean acidification generally addressed significant negative effects on gametes traits (such as sperm swimming velocity and fertility), fertilization success, early stage embryonic development, biological calcification, and gene expression of a wide variety of marine invertebrates, including coelenterates, mollusks, nematodes, echinoderms, annelids, and arthropods. In addition, previous studies have showed that different marine invertebrates and marine invertebrates at various life stages exhibited differences in their responses to ocean acidification. Though the influences of ocean acidification on marine organisms have been a study hotspot for marine ecologists and marine biologists for about a decade and generally it is believed that the negative impacts of ocean acidification on marine invertebrates are due to the reduction of calcium carbonate saturation state, the alternation of pH, and the subsequent responses of bio-reaction pathways. However, the mechanism underneath these reported negative impacts of ocean acidification on marine invertebrates were not fully understood. Moreover, among the great number of marine invertebrate species only a few organisms such as corals, sea urchins, and blue mussels, have been well investigated. Furthermore, due to the fact that most studies are conducted in laboratory, whether they can reveal the true scene in natural environment is debatable. In this article, results of previous researches about the influences of CO2-driven ocean acidification on the gametes, fertilization, embryonic development, calcification, metabolism, and gene expression of various marine invertebrates were summarized. The potential impacts of ocean acidification on marine ecosystem were also discussed. The authors suggest that to precisely reflect the future scenario studies on the interaction between ocean acidification and marine invertebrates should be carried out in a wider range of species and take the complexity of marine ecosystem and environment into account.