西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律
作者:
作者单位:

中国科学院寒区旱区环境与工程研究所,中国科学院寒区旱区环境与工程研究所,中国科学院寒区旱区环境与工程研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家杰出青年科学基金(41125002);国家自然科学基金项目(40930634,41271036)


Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River basin, Northwestern China
Author:
Affiliation:

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    利用中国生态系统研究网络临泽内陆河流域研究站绿洲农田2009年小气候、湍流交换、土壤蒸发和叶片气孔导度等综合观测试验数据,应用Shuttleworth-Wallace(S-W)双源模型以半小时为步长估算了绿洲农田玉米生长季实际蒸散量,并利用涡动相关与微型蒸渗仪实测数据对田间蒸散发量和棵间土壤蒸发量计算结果进行了检验。结果表明:S-W模型较好地估算研究区的蒸散量,并能有效区分农田作物蒸腾和土壤蒸发;全生育期玉米共耗水640 mm,其中作物蒸腾累积量为467 mm,土壤蒸发累积量为173 mm,分别占总量的72.9%和27.1%;日时间尺度上,作物蒸腾和土壤蒸发分别在0-6.3 mm/d和0-4.3 mm/d之间变化,其日平均分别为2.9 和1.0 mm/d;田间供水充足,作物蒸腾与土壤蒸发比值明显受作物生长过程影响,播种-出苗期、出苗-拔节期、拔节-抽雄期、抽雄-灌浆期、灌浆-成熟期,其比值分别为0.04、0.8、7.0、5.2和1.4,不同阶段的比值差异主要受叶面积指数影响。

    Abstract:

    The process of evapotranspiration (ET), which takes into account both evaporation (E) and plant transpiration (Tr), plays a prominent role in water and heat exchange in terrestrial ecosystem, given that it involves interactions between plants, soil and atmosphere. Evapotranspiration is also vital for developing water-saving irrigation schemes and improving the crop water productivity of farmland ecosystems. As for the components of evapotranspiration, investigating transpiration and evaporation separately can help us understanding crop water requirements more thoroughly. We investigated the variation in crop water consumption during the growing season for a maize field located in the Linze Inland River Basin Research Station of the Chinese Ecosystem Research Network. In this investigation, we obtained essential data, including microclimate, turbulent exchange, evaporation, and leaf stomatal conductance, in 2009. Based on these data, we simulated transpiration and evaporation in half-hour time steps using the Shuttleworth-Wallace (S-W) model. Comparing the calculated ET data with eddy covariance data through correlation analysis, we found that the correlation coefficient (R2) was 0.70, the mean square error (MSE) was 0.67, and P less than 0.001. A correlation analysis between evaporation data measured by a micro-lysimeter and evaporation data simulated by S-W model shows a good accordance between them, with R2 of 0.64, MSE of 0.67, and P less than 0.001. The S-W model was found to be useful for dividing evapotranspiration into transpiration and evaporation. After applying the model, it can be concluded that during the growing season, the cumulative evapotranspiration was about 640 mm, which consisted of 467 mm of transpiration and 173 mm of evaporation. It means that transpiration and evaporation accounted for 72.9% and 27.1% of evapotranspiration, respectively. On a daily basis, transpiration ranged from 0 to 6.3 mm/d (mean = 2.8 mm/d), while evaporation ranged from 0 to 4.3 mm/d (mean = 1.0 mm/d). The ratio of transpiration to evaporation varied with crop growth. Transpiration (water consumption) of maize during different growing stages can be summarized as follows. The ratio of transpiration to evaporation (Tr/E) was 0.04 when the leaf area index (LAI) was close to zero from seeding to emergence stage, indicating that evaporation constituted a large proportion of evapotranspiration. From emergence to jointing stage (LAI= 0.35), the ratio of Tr to E was 0.8, while transpiration and evaporation accounted for 45% and 55% of evapotranspiration, respectively. However, from jointing to tasseling stage (LAI= 3.81), when most of the solar radiation was captured by the canopy, transpiration accounted for 87.4% and evaporation dropped to only 12.6% of evapotranspiration, while Tr/E was 7.0. From tasseling to filling stage, the ratio of Tr to E was 5.2, while transpiration and evaporation constituted 83.8% and 16.2% of evapotranspiration, respectively. Finally, from filling to maturity, the ratio of Tr to E dropped to 1.4 causing by little water requiring by mature maize. From these findings about evapotranspiration related to maize, it can be seen that water consumption varies by regions, growing stages of the crop, and water availability. Evapotranspiration was greatest during the tasseling and filling stages, and irrigation was also heavy at these times, indicating that the irrigation scheme was reasonable. The total evapotranspiration over the growing season was 640 mm, while the total water supply (the sum of irrigation and precipitation) was 895 mm, which means that the current irrigation scheme supplied a sufficient amount of water to the maize. However, as precipitation changes during the growth stage, the irrigation scheme should also be adjusted such that the water supplied is balanced with the water requirements of the crop for a particular growth stage. To keep water balance between supply and consumption will be help water saving in this area. Both meteorological factors and crop conditions can affect evapotranspiration. Microclimate changes with meteorological factors, leading the variation in total evapotranspiration. In addition, the earth surface coverage, canopy aerodynamics, and other conditions are affected by the crop itself (especially the LAI), which can alter the ratio of crop transpiration and water evaporation from soil.

    参考文献
    相似文献
    引证文献
引用本文

赵丽雯,赵文智,吉喜斌.西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律.生态学报,2015,35(4):1114~1123

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: