Abstract:Urbanization profoundly affects ecological processes across many scales. Most such effects are primarily due to land use/cover transformations. At the local scale proliferation of impervious surfaces and decreases in vegetation cover in cities have led to phenological differences between urban and rural areas. In this study, we monitored spring phenology of Populus alba L.var. pyramidalis Bunge, P. cathayana Rehd and P. tomentosa Carr. at multiple sites across the urban core and in the surrounding rural areas of Hohhot city, Inner Mongolia. Urban sites were established mainly along streets, in city parks and schools. Rural sites occupied different natural localities in suburbs characterized by significant distance from the urban core and relatively low human disturbance. Spring phenophases we monitored include leaf budburst (BL), first full leaf (L1), and unfolding of ≥ 50% leaves (LU). We simultaneously measured air temperature at each site using ThermochronDS-1921G (±1 ℃ accuracy, 0.5 ℃ precision) data loggers which collected data between late March (Day of Year (DOY) = 88) and late November(DOY= 330) during two growing seasons. Land use/cover patterns were analyzed by digitizing green spaces (including trees, manicured lawns, grasses, and agriculture), bare soil (unpaved areas), water (lakes, rivers) and pavements in the 300 m circular buffer around each site. Proportions of each cover type at each site were used as explanatory variables for observed patterns of temperature and phenology. Correlations and regression analyses were performed using SPSS 17.0. Our findings suggest the following conclusions. 1) The timing of leaf budburst (BL), first full leaf (L1) and unfolding of ≥ 50% leaves (LU) phenophases were best predicted by mean daily temperature, minimum daily temperature and Growing degree days temperature that above 5 degree centigrade (GDD5) of April prior to the initiation of each phenophase. However, the relationship between the three phenophases and maximum daily temperature of April were positively correlated; 2) Among the four land use/cover types, green spaces together with bare soil were negatively related to the mean daily temperature, GDD5, and minimum daily temperature of April to June. We found high positive correlation between paved areas and all temperature variables. 3) Green spaces together with water were negatively correlated with the first full leaf (L1) phenophase, while paved areas had positive correlations with L1. Differences in land use/cover were clearly were reinforced by distinct mean daily temperature and GDD5. We conclude that rural to urban land use/cover pattern transition in general advances spring phenophases by significantly increasing temperature, the primary environmental driver of phenology. Our study of the rapidly urbanizing area of Inner Mongolia provides important information for scientists and practitioners engaged in understanding effects of urbanization on environmental and human health.