Abstract:Climate change is predicted to increase both drought frequency and duration. Arid and semiarid regions, which account for 45% of the global land area, support 38% of the global population, but are regions that have very fragile ecological and water resource systems. Over the past 100 years, the global mean temperature increase for arid regions was 0.94℃/100a, which is higher than the average global mean temperature increase of 0.74℃/100a. Over this period, global arid and semiarid regions have become drier and drier. About 10%-20% of the global arid and semiarid land has become seriously degraded, the area of extremely arid land has doubled and the total area of land classed as arid is nearly 30%. Large scale droughts have recently occurred in North America, Africa, Europe, South America and Australia, resulting in major changes to terrestrial ecosystems, the carbon balance and food security. The continuous aridification over 30 years of the semiarid region of North China has led to serious environmental degradation and a lack of water resources, which has seriously restricted sustainable regional development. The semiarid area in Northwest China is also sensitive to climate change. Over the past 50 years, the air temperature has risen and rainfall has fallen, which have caused the climate to become warmer and drier. A series of changes, including higher temperatures, increased drought and warmer winters, have significantly influenced crop production. Over the next 50 years, the global climate will continue to warm, which will directly affect agriculture and may have an impact on grain safety. The global annual potato yield is 320 million tons, next only to wheat, corn and rice, which makes potato the fourth largest crop in the world. The annual potato yield in China is 80 million tons. The climatic, biological and soil environment in the semiarid area of loess plateau in Northwest China is very suitable for potato growing and is the main potato production area in China. Potato can grow over a range of temperatures. Some studies have shown that a low temperatures increase the formation and accumulation of dry matter in potato stems and tubers. High temperatures, over the longer term, increase the number of small tubers, decrease the tuber specific weight, reduce the amount of dry matter transferred to the tuber and influence potato quality. This study investigated whether climate change will negatively influence the yield and quality of potatoes grown in semiarid areas of Northwest China. An experimental study based on simulated farm warming using infrared radiators showed that potato growth stage lengths, such as: sowing-seedling, emergence-bud and emergence-blooming-maturity, changed as the temperature increased. If the temperature increased by 0.5-2.5 ℃, then the sowing-seedling emergence and the seedling emergence-bud emergence growth stages were shortened by 1-4 d and 1-2 d, respectively, the bud emergence-blooming and the blooming-maturity growth stages were prolonged by 1-2 d and 1-10 d, respectively, and the whole growing period from sowing to maturity was prolonged by 1-5 d. The whole growing period, especially the fully blooming to stem and leaf senescence stage, was prolonged as the temperature increased and this was advantageous as it prevented the early senescence of stems and leaves and increased the accumulation of starch. Warming significantly decreased the number of potatoes produced by each plant, but increased the weight of each potato. Thus overall potato yield increased, but not significantly. If the temperature increased by 1.5-2.5 ℃, then potato yield improved by 1.0%-3.5%. The dry matter, starch and vitamin C contents increased as the temperature rose, but the protein and reducing sugar contents significantly decreased. The results suggested that warming may not have an effect on potato yield, but may have a significant influence on potato quality. When the temperature was increased by 1.5-2.5℃, the potato yield improved by 1.0%-3.5% and when the temperature was increased by 0.5-2.0℃, the potato dry matter content increased to 24.5% from 22.4%, the starch content was reduced to 1.52% from 1.82% and the reducing sugar content fell to 0.22% from 0.24%. This means that increasing temperatures improve potato dry matter accumulation and starch content but reduce the formation of crude protein and reducing sugar.