Abstract:It is of great significance for guiding the low-carbon city development to explore the trends and influencing factors of carbon intensity. Most traditional decomposition studies only focused on the energy carbon emissions from industrial sectors. This paper extended the application of the Logarithmic Mean weight Divisia Index (LMDI) method to a full consideration of the industrial and household sectors, as well as their energy and non-energy activities. Taking Xiamen City as a study case, the carbon emissions was calculated by IPCC's methods based on the end-use consumption data of the industrial and household sectors from 2005 to 2010. Then the aggregated carbon intensity was decomposed by LMDI method into ten driving factors, which covering energy and non-energy related emissions from industrial and household sectors. The ten driving factors were further categorized into four groups: carbon emission efficiency effect (including efficiency factors of energy related industrial carbon emissions, energy related household carbon emission, non-energy related industrial carbon intensity, and non-energy related household carbon intensity), energy intensity effect (including industrial energy intensity factor and that of household), industry structure effect (energy related industrial structure factor and non-energy one) and economic efficiency effect (energy related economic efficiency factor and non-energy one). Results showed that carbon intensity of Xiamen City decreased by 17.29% from 2005 to 2010. From perspective of driving factors, the energy intensity of industrial sector had the greatest effect on carbon intensity reduction (a contribution rate of 63.07%), and the energy intensity of household sector was the largest hinder of carbon intensity reduction (-45.46%). So energy intensity had significant impact on carbon intensity reduction for Xiamen City. Except for reducing the energy intensity of industrial sectors, it is also very important to control the growth of household's energy intensity at the same time. From the effect perspective, the economic efficiency effect became the dominant driver of carbon intensity reduction, followed by energy intensity effect and industry structure effect, and carbon emission efficiency effect contributed the less. The economic efficiency contributed 50.85% of total carbon intensity reduction, which greatly promoted household's carbon intensity reduction. Although industrial structure adjustment had relatively small effects at the study periods, the industry structure in which secondary industry has large proportion is anticipated to have large reduction potentials in the future. The carbon emission efficiency effect was chiefly determined by energy structure, and the current carbon-intensive energy structure also has large reduction potentials. From the sector perspective, the contribution of the secondary industry was the largest (contributing 67.04%), sequentially followed by the primary industry, the tertiary industry, and the household sector. The carbon intensity reduction by secondary and tertiary industries mainly lied in energy related carbon emissions; whereas the carbon intensity reduction by the primary industry and household sectors mainly relied on non-energy emissions. Thus the non-energy related carbon emissions were an non-negligible part while analyzing carbon intensity reduction. Even though energy efficiency of household sector was the biggest disincentive to reduce carbon intensity, household sector had the less contribution on carbon intensity reduction due to other factors' offset effect. Furthermore, the key sector for future carbon reduction lies on the secondary industry. However, the primary Industry and household sector has limited reduction potential. Overall, optimizing industry structure and energy structure have large reduction potential, and secondary industry has largest reduction potentials.