北京奥林匹克森林公园绿地碳交换动态及其环境控制因子
作者:
作者单位:

北京林业大学水土保持学院,北京林业大学水土保持学院,北京市林业碳汇工作办公室,北京市林业碳汇工作办公室,北京林业大学水土保持学院,北京林业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家"十一五"科技支撑计划项目(2008BAD95B07)


Dynamics of CO2 exchange and its environmental controls in an urban green-land ecosystem in Beijing Olympic Forest Park
Author:
Affiliation:

School of Soil and Water Conservation,Beijing Forestry University,School of Soil and Water Conservation,Beijing Forestry University,Beijing Forestry Carbon Administration,Beijing Forestry Carbon Administration,School of Soil and Water Conservation,Beijing Forestry University,School of Soil and Water Conservation,Beijing Forestry University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    随着城市化进程的推进,城市公园绿地的面积也在不断地增加。在碳循环与气候变化研究中,以人工植被为主要存在形态的城市绿地生态系统,其潜在的碳汇功能亦不容忽视。基于涡度相关技术,于2011年12月1日至2012年11月30日对北京奥林匹克森林公园城市绿地生态系统进行了碳通量观测,以探讨城市绿地生态系统碳交换及其与环境因子的关系及其源/汇属性和强度。研究发现:奥林匹克森林公园绿地年总生态系统生产力(GEP)、生态系统呼吸(Re)、生态系统净生产力(NEP)具有明显的季节变化,生长季(4月-11月)以吸收二氧化碳(CO2)为主,非生长季以释放CO2为主。Re随空气温度(Ta)呈指数增加,温度敏感性系数(Q10)为2.5;GEP也随Ta的升高而增加;GEP与ReTa的响应差异决定着NEP与Ta的关系:当Ta < 10.0 ℃时,NEP随Ta升高而下降;当Ta > 10.0 ℃时, NEP随Ta升高而增加。在生长季各月,日总GEP随日光合有效辐射(PAR)的升高而增加,生态系统光合作用表观光量子效率(α)和平均最大光合速率(Amax)也表现出明显的季节变化,最大值出现在7月,分别为0.083 μmol CO2/μmol PAR 和29.46 μmol·m-2·s-1,最小值出现在11月,分别为0.017 μmol CO2/μmol PAR和4.16 μmol·m-2·s-1。奥林匹克森林公园绿地全年GEP、Re、NEP的年总量分别为1192、1028、164 g C/m2。该研究结果可用于估算、模拟预测相似城市生态系统在气候变化背景下生态系统净碳交换,可作为城市绿地生态系统管理与应对气候变化的重要理论基础。

    Abstract:

    The area of urban forests and green-land is expanding dramatically across China in order to face rapid urbanization. Urban green-land ecosystems with plantations as their main vegetation type, have the great potential to sequestrate atmospheric carbon. Continuous measurements of CO2 flux were made using eddy covariance technique from December 2011 to November 2012 in a mixed forest in Beijing Olympic Forest Park to quantify the seasonal dynamics of net ecosystem CO2 exchange (NEE) and its responses to environmental factors. Gross ecosystem productivity (GEP), ecosystem respiration (Re), and net ecosystem productivity (NEP =-NEE) showed strong seasonal pattern, with CO2 uptake dominating during the growing season from April to November, and a respiratory release of CO2 dominating during the non-growing season. The carbon flux was influenced by photosynthetically active radiation (PAR), water vapor pressure deficit (VPD) and air temperature (Ta). In growing season, daytime net ecosystem carbon exchange (NEEday) increased with increasing PAR. The ecosystem quantum yield (α) and maximum photosynthesis (Amax) showed an apparent seasonal pattern, both peaking in July. VPD also affected NEE through its direct effect on photosynthesis. NEE increased with the increasing PAR up to a threshold of 1200 μmol·m-2·s-1, then decreased with increasing PAR above this threshold. GEP, Re and NEP were all influenced by Ta, but responded differently. Re increased exponentially with air temperature (Ta), with the temperature sensitivity (Q10) being 2.5. GEP also increased with Ta. This differential response of GEP and Re determined the relationship between NEP and Ta. NEP decreased with increasing Ta when Ta < 10.0 ℃, but increased when Ta > 10.0 ℃. NEEday increased with PAR. The ecosystem quantum yield (α) and maximum photosynthesis (Amax) showed an apparent seasonal pattern, both peaking in July with the value of 0.083 μmol CO2/μmol PAR and 29.46 μmol·m-2·s-1, respectively, and reaching a minimum in November with the value of 0.017 μmol CO2/μmol PAR and 4.16 μmol·m-2·s-1. The predicted annual totals of GEP, Re and NEP were 1192, 1028 and 164 g C/m2, respectively. The present results could contribute to the carbon budget of urban ecosystems, and help make carbon-oriented management strategies for sustainable urban development under global climate change.

    参考文献
    相似文献
    引证文献
引用本文

陈文婧,李春义,何桂梅,王小平,查天山,贾昕.北京奥林匹克森林公园绿地碳交换动态及其环境控制因子.生态学报,2013,33(20):6712~6720

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: