湖南会同杉木人工林林冠截留特征
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划子课题(2015BAD07B050301);湖南省自然科学创新研究群体基金(湘基金委字[2013]7号)


Canopy interception characteristics of Chinese fir plantations in central south China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    林冠对降水的截留是森林生态系统水分平衡的一个重要组成部分,在水分循环和水资源管理方面起着非常重要的作用。杉木是我国特有的速生商品材树种,研究杉木人工林各生长阶段的林冠截留,能更好的了解杉木各生长阶段的水循环过程以及涵养水源的能力。以湖南会同杉木林生态系统国家野外科学观测研究站第Ⅲ集水区杉木人工林为研究对象,采用小集水区径流场综合试验法对1983年至2007年杉木人工林幼龄阶段、中龄阶段及近熟阶段3个不同生长阶段的林冠截留进行分析。结果表明:(1)杉木人工林不同生长阶段年均截留率分别为:幼龄阶段26%、中龄阶段27.86%和近熟阶段29.47%,3个阶段的截留率季节变化规律相似,但在降雨量较小的月份,近熟阶段的截留率明显高于幼龄阶段。(2)在雨量级小于1.0 mm时,3个阶段林冠截留率都较高且无明显差别,均在86%以上;在1.0-2.0mm雨量级时,3个阶段截留率与雨量级小于1.0 mm时均大幅降低,但3个阶段截留率物显著差异,幼龄阶段48.1%、中龄阶段48.7%和近熟阶段47.1%;在进入2.0-4.0 mm雨量级时,3个阶段截留率差异较大,幼龄阶段30.5%、中龄阶段38.4%和近熟阶段44.1%,近熟阶段的林冠能截留住更多的降雨;当降雨量大于100 mm时,3个阶段林冠截留率又无明显差异截留率均低于10%。(3)Fan模型对各阶段杉木人工林林冠截留的模拟较为理想。

    Abstract:

    Canopy rainfall interception is an important component of water balance in forest ecosystems and plays an important role in the water cycle and water resources management. Studying on rainfall interception across different aged stands of the specific fast-growing merchandise wood species-Chinese fir (Cunninghamia lanceolata), can help us to better understand on water cycling and water resource conservation. In this study, canopy interception process was investigated using the small watershed comprehensive experimental technology at the third watershed (No.Ⅲ) in Huitong National Key Forest Ecosystem Research Station, Hunan. Forest rainfall, throughfall, and stemflow were monitored and the rate of rainfall interception was estimated in young, mid-age, and early-mature stands of Chinese fir plantations from 1983 to 2007. The mathematic Fan model was used to estimate the rainfall interception process. The results showed that (1) the average rainfall interception rates were 26.0% in young stands, 27.9% in mid-age stands, and 29.5% in early-mature stands; the seasonal variation of interception rates was similar in the three stages of Chinese fir plantations, but the interception rates were significantly higher in early-mature stands than young stands, especially within the months when rainfall amount was small. (2) When a rainfall event was amounted to less than 1.0 mm, there was no significant difference in rainfall interception rates for all three stands, which were all over 86%; when the amount of a rainfall event was 1.0-2.0 mm, interception rates considerably declined in the three growth stands. The interception rate was 48.1% in the young stands, 48.7% in the mid-age stands, and 47.1% in the early-mature stands and no significant differences were found in terms of interception rates among the three stands; when a rainfall event reached 2.0-4.0 mm, the interception rates significantly differed in the three stands, with the values of 30.5% in the young stand, 38.4% in the mid-age stand, and 44.1% in the early-mature stand; when a rainfall amount was greater than 100 mm, the interception rates were not significantly different between the three stands with less than 10% of interception rates. (3) The Fan model was suitable for interpreting rainfall interception of Chinese fir plantations in these studied regions.

    参考文献
    相似文献
    引证文献
引用本文

伍倩,闫文德,赵亮生,邓湘雯,宁晨,项文化.湖南会同杉木人工林林冠截留特征.生态学报,2016,36(13):4131~4140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: