植物盐胁迫应答蛋白质组学分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31071194);黑龙江省杰出青年科学基金项目(JC201011);中央高校基本科研业务费专项资金(DL09DA03)


Salt-responsive proteomics in plants
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础。近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱。从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用。这些分析为深入研究植物耐盐的分子机制提供了重要信息。

    Abstract:

    Soil salinity is one of the most severe factors restricting plant development and distribution throughout the world. Investigation of salt-tolerant molecular mechanisms in plants will help to enable enhancement of plant salt tolerance using molecular biological techniques. Recently, salt-responsive protein profiles in 19 plant species, represented by the model plants Arabidopsis thaliana and Oryza sativa, have been analyzed. Based on these studies, we highlighted the regulatory mechanisms by analyzing the dynamic changes of proteins in different plant groups (glycophytes and halophytes), tissues/organs (root, aerial part, hypocotyl, radicle, leaf, panicle and gametophore), cells (suspension cells, callus and algae) and subcellular structures (chloroplast, plasma membrane and apoplast). The main salt-responsive mechanisms revealed by proteomics were: (1) halophytes can enhance their salt tolerance by regulating the global metabolic and signal networks, such as cytoskeleton remodeling, ion transport and compartmentation, osmolyte accumulation, reactive oxygen species (ROS) scavenging, signal transduction, photosynthesis and energy metabolism; (2) the aerial parts of plant (such as the leaves, shoots and gametophores), photosynthetic cells (e.g., suspension cells, callus and unicellular algae) can adapt to salinity by regulating photosynthesis, carbohydrate and energy metabolism and ROS scavenging; (3) the underground parts of plant (roots and radicle) can perceive and deliver a stress signal and maintain ion homeostasis by regulating expression of signal transduction- or ion transport-related proteins; (4) the proteins involved in osmolyte biosynthesis, transcription, protein processing and ROS detoxification are changed significantly in panicles; (5) the chloroplasts respond to salt stress by altering photosynthesis, protein processing/turnover, and oxidation balance; (6) the expression of proteins related to cell wall metabolism, stress and defense, and oxidation balance changed significantly in apoplasts; and (7) the membrane proteins involved in the cell membrane structure remodeling, material/ion transport and signal transduction play important roles under salt stress. All of these mechanisms provide new insights into the salt-tolerance of plants.

    参考文献
    相似文献
    引证文献
引用本文

张恒,郑宝江,宋保华,王思宁,戴绍军.植物盐胁迫应答蛋白质组学分析.生态学报,2011,31(22):6936~6946

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: