基于人工神经网络的农业病虫害预测模型及其效果检验
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S431

基金项目:


Prediction model of agricultural plant diseases and insect pests based on artificial neural network and its verification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    选取与病虫害有关的因子作为样本的输入特征,建立了农业病虫害年分类预测的B-P人工神经网络模型。该方法应用于稻瘟病的预测建模结果的拟合率为100%,预留样本检验报准率为83%。

    Abstract:

    A model is developed for the classified prediction of agricultural plant diseases and insect pests using B P artificial neural network with factors related to agricultural plant diseases and insect pests as input features of sample.The results of prediction to rice blast show that the qualified retes of fitting and predicting using this model acquire 100% and 33.3%,respectively.

    参考文献
    相似文献
    引证文献
引用本文

李祚泳,彭荔红.基于人工神经网络的农业病虫害预测模型及其效果检验.生态学报,1999,19(5):759~762

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: