多水平贝叶斯模型预测森林土壤全氮
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家林业局重点科研资助项目(2006-69); 国家科技部国际科技合作资助项目(2006DFA01780); 国家林业公益性行业科技专项经费资助项目(200804022);国家“十一五”科技支撑计划资助项目(2006BAD03A02);北京市科委重大资助项目(D0706001000091)


Hierarchical Bayesian model for predicting the soil nitrogen of forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    多水平贝叶斯方法阐明了预测中观测值、模型和参数的不确定性,被越来越多的生态学家所使用。应用多水平贝叶斯方法建立了北京八达岭地区森林土壤全氮模型,分析了模型参数及其不确定性,并对该区不同土壤层(A、B、C)全氮含量进行了预测。得到如下结论:(1)该区森林土壤全氮多水平贝叶斯模型为yi~N(β0j\[i\],k\[j\]+β1j\[i\],k\[j\]xi,σ2y)。(2)对模型参数和其曲线不确定性分析表明,该模型能够很好的预测该区土壤全氮含量。(3)模型预测表明:土壤A层,随着海拔的增加,全氮含量递增。土壤B层,随着海拔的升高,植被类型0、1、2、3土壤全氮含量递增,而植被类型4土壤全氮含量出现递减现象。土壤C层,随着海拔的增加,植被类型0土壤全氮含量递增,而植被类型1、2、3、4土壤全氮含量均表现为递减。各植被类型土壤全氮含量都随着土层的深度而减少。

    Abstract:

    Hierarchical Bayesian method is increasingly being used by ecologists. Methods to accomplish such predictions could explain uncertainties in observation, sampling, models, and parameters. Soil nitrogen model was built using Hierarchical Bayesian method that accommodates uncertainties of data and model provides a richer understanding of the model in Badaling region. At the same time, soil nitrogen content was predicted in different soil layers(A, B, C). The results show that: (1) Soil nitrogen modeling is yi~N(β0j\[i\],k\[j\]+β1j\[i\],k\[j\]xi,σ2y) for the research area. (2) Uncertainties of data and model indicated that the model is good to predict soil nitrogen content. (3) Prediction of soil nitrogen content showed that soil nitrogen content of A layer was increased with increasing of elevation. It was found that soil nitrogen content of plant type 0,1,2,3 were increased with the increase of elevation in B layer, however, soil nitrogen content of plant type 4 was decreased with the increase of elevation in the layer. With the increase of elevation, there was a increase observed in soil nitrogen of the vegetation type 0, while a decrease in that of vegetation types 1,2,3,4 in layer C. Soil nitrogen content of layer A was the greatest, followed by layer B and layer C. The result indicated that soil nutrient content decreased with increasing depth.

    参考文献
    相似文献
    引证文献
引用本文

张振明,余新晓*,朱建刚.多水平贝叶斯模型预测森林土壤全氮.生态学报,2009,29(10):5675~5683

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: