微粒群优化神经网络及其在环境评价中的运用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

Q143

基金项目:


The enviromental quality assessment of neural network algorithm trained by
particle swarm optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    农业项目环境影响综合评价是目前新的研究领域,随着农业项目的增加,其环境影响的研究愈来愈重要。以某农业项目为例,运用PSO-BP进行农业项目环境评价;仿真和实验表明:微粒群优化神经网络,能够克服神经网络收敛速度慢,陷入局部最小的缺点;微粒群优化算法涉及的参数不多,但是微粒群优化结果是比较理想的。

    Abstract:

    The environmental effect evaluation of agricultural projects is current a new research field. With the increase of projects, the study of environmental effect appears more and more important. We applied PSO-BP to evaluate the environmental effect of an agricultural project. Emulation and experiment show that the method of neural network algorithm trained by particle swarm optimization has overcome its disadvantage of slow convergent speed and shortcoming of local optimum. Particle swarm optimization needs only a few parameters and is a simple, while the result is pretty good.

    参考文献
    相似文献
    引证文献
引用本文

陈莉,朱卫东.微粒群优化神经网络及其在环境评价中的运用.生态学报,2008,28(3):1072~1079

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: