Abstract:Tidal waterlogging is one of the most important stresses to mangroves. The duration of waterlogging is a limiting factor for the survival of mangrove seedlings. On adapting to waterlogging in the intertidal zones, mangroves have developed a set of mechanisms of waterlogging resistance, such as the growth of aerial roots and air space in the roots, special photosynthesis rates and nutrient circle. Scientists have shown great interesting in mangroves waterlogging resistance. The present paper reviews five aspects of the mechanisms of mangroves in responses to waterlogging, which are morphological and anatomical factors, growth, water use efficiency and photosynthesis, activities of alcohol dehydrogenase and enzymes processing reactive oxygen species, and plant growth regulators. Aerial roots and aerenchyma in cortex are important for mangroves’ resistance to waterlogging, by allowing oxygen to be replenished. Under tidal flooding, oxygen transported in the aerenchyma can maintain the oxygen demand of the roots. Like other stress, under waterlogging conditions the growth of mangroves falls, the photosynthetic rate declines, and leaves pigment contents change. In addition, the activities of enzymes processing reactive oxygen species and of dehydrogenase change. These physiological and photosynthetic responses of mangroves facilitate their tolerance to waterlogging. The plant growth regulator abscisic acid is also greatly induced by waterlogging. However, no reports about the relationship between content of ethylene or polyamine and waterlogging in mangroves have been reported. To investigate waterlogging resistance mechanisms of mangroves, artificial tidal equipment is useful. It simplifies the conditions, and simulates different kinds of tidal cycles, including different durations of waterlogging. We find it necessary to study further the growth of mangroves to waterlogging, because it is the base for plant resistance research. Similarly, studies on plant hormone combined with molecular techniques will be of great interest in research on mangroves waterlogging. Further studies should be focused on the molecular mechanisms of hormone changes in mangroves during waterlogging. Studies on the mechanisms of mangroves waterlogging resistance will provide theoretical guidance for mangroves rehabilitation.