成都大熊猫国家公园滑坡易发性评价
DOI:
作者:
作者单位:

中国地质大学北京 自然文化研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Landslide susceptibility evaluation of Chengdu Giant Panda National Park
Author:
Affiliation:

Institute of Natural Culture, China University of Geosciences (Beijing)

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滑坡是全球最具破环性的地质灾害之一,对道路、人员安全和生态环境造成严重影响,因此,易发性评价对科学系统地防治滑坡灾害非常重要。以大熊猫国家公园成都片区为研究区,基于VIKOR法、频率比法(FR)和随机森林(RF)、CatBoost(CB)、LightGBM(LG)三个分类算法建立混合模型,并选取了地形因子、水文因子、土壤植被因子等20个致灾因子。利用频率比研究因子与滑坡发生的空间相关性,用三种算法计算因子重要性,在此基础上利用混合模型绘制区域滑坡易发性图,并采用受试者工作特征曲线(ROC)和曲线下的AUC值以及Kappa系数评估模型的准确率和精确度。结果表明,VIKOR-FR-LG为最优预测模型,海拔、距河流远近和距断层远近是影响滑坡发生的显著因子,区域极高敏感区面积为2473.30km2。因此,VIKOR-FR-LG是预测研究区滑坡易发性最有效的模型,研究结果可为成都大熊猫国家公园防治滑坡灾害和生态安全管理提供参考。

    Abstract:

    Landslides are one of the most destructive geological hazards worldwide, posing serious impacts on roads, human safety, and the ecological environment. Therefore, susceptibility assessment plays a crucial role in scientifically and systematically preventing and mitigating landslide disasters. Taking the Chengdu Panda National Park as the study area, a hybrid model was developed based on the VIKOR method, frequency ratio (FR) method, and three classification algorithms: Random Forest (RF), CatBoost (CB), and LightGBM (LG). A total of 20 triggering factors, including topographic, hydrological, and soil-vegetation factors, were selected. The spatial correlation between factors and landslide occurrence was studied by using the frequency ratio, and the importance of factors was calculated using the three algorithms. Based on this, a susceptibility map for landslides in the region was created using the hybrid model. The accuracy and precision of the models were evaluated using the Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), and Kappa coefficient. The results showed that the VIKOR-FR-LG model performed the best in predicting landslide susceptibility. Elevation, proximity to rivers, and distance from fault lines were found to be significant factors affecting landslide occurrence, and the area with extremely high sensitivity covered 2473.30km2. Therefore, VIKOR-FR-LG is the most effective model for predicting landslide susceptibility in the study area, and the research findings can provide reference for landslide prevention and ecological safety management in the Chengdu area of the Giant Panda National Park.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: