文章信息
- 李承义, 何明珠, 唐亮
- LI Chengyi, HE Mingzhu, TANG Liang
- 荒漠生态系统磷循环及其驱动机制研究进展
- Advances on phosphorus cycle and their driving mechanisms in desert ecosystems: A review
- 生态学报. 2022, 42(12): 5115-5124
- Acta Ecologica Sinica. 2022, 42(12): 5115-5124
- http://dx.doi.org/10.5846/stxb202102250530
-
文章历史
- 收稿日期: 2021-02-25
- 网络出版日期: 2022-02-14
2. 中国科学院大学, 北京 100000
2. University of Chinese Academy of Sciences, Beijing 100000, China
荒漠生态系统约占陆地面积的1/3, 覆盖热带、亚热带、温带和极地地区, 承载了全球近25亿人口[1-3]。荒漠环境高温少雨、干旱频发、降水年际波动大且季节分配不均、风/水蚀作用显著, 外加土壤发育时间短, 肥力较低[2-4], 导致荒漠中植被稀疏, 生物多样性低, 环境脆弱。二十世纪以来, 随着全球气候变化和人类活动的过度干扰和破坏, 使荒漠生态系统的稳定性、恢复力、服务功能和可持续发展等正面临严峻挑战[4-5]。
在荒漠中, 碳(C), 氮(N)和磷(P)参与了生态系统的能流和物流过程, 通过与水作用调控着荒漠生态系统的持续稳定性。作为构成细胞膜、DNA、RNA和ATP的关键元素, P是荒漠生态系统中生命存在的物质基础。相较C和N, P因其自身的来源和有效性使其成为了荒漠生态系统中重要的限制因子之一。在自然界中, 植物能获取的有效P量非常有限, 一方面是因为P循环属于相对封闭的沉积型循环, 自然环境中其周转时间极为漫长(107—108a)[6];另一方面则受限于P循环的驱动机制。且后者是控制磷循环的关键。
荒漠中P循环的驱动机制十分复杂。首先, 荒漠中母岩风化、大气尘埃的干湿沉降、土壤微生物和动植物生物量的输入/输出均影响P的循环[7]。其次, P元素通过参与荒漠植物光合和呼吸等过程维持植物正常的生理活动, 改变荒漠植物生理功能、生活策略和种群密度, 进而影响整个植被系统[8-9]。如北美荒漠中土壤低有效P浓度限制了三齿蒿(Artemisia tridentata Nutt.)[10]和旱雀麦(Bromus tectorum L.)的生长[11-12], 而总磷和有效磷量变化改变了中国阿拉善荒漠区沙蒿种群密度[9]。所以, 对于荒漠生态系统有限的有效磷, 荒漠植物进化出了适应低P环境的特征或通过其他媒介获取足够的有效P以完成自己的生活史, 如荒漠植物会通过根系分泌有机物获取P和/或对其植物叶内P进行重吸收利用[13-14];也会通过根系-菌根网络系统扩大与土壤接触面积来增加有效P的获取量以满足自身生长需求;又如荒漠中生物土壤结皮(BSC)通过截留降尘和改变降水分布增加土壤有效P量, 同时, 结皮生物分泌有机酸等能从土壤胶体中解吸出P以供荒漠植物生长[15-17]。最后, 气候变化通过多种方式影响荒漠中P的循环, 如干旱阻碍荒漠土壤中P的矿化过程[18-19], 脉冲式降水和N沉降影响土壤有效P的解吸[20-22], 水P耦合和氮磷耦合限制植物生长[8, 23-24]等。
综上, P在荒漠生态系统中凸显出至关重要的地位。且对于我国而言, 荒漠生态系统面积有1.65×106 km2, 约占国土面积的17%, 其服务总价值约为42279亿元人民币(2014年价格), 主要体现在防风固沙(40.1%)、水文调控(24.2%)、土壤保育(18.1%)和固碳(17.0%)方面[25]。而P作为构建荒漠生态系统的关键元素, 目前国内仍缺乏其在荒漠生态系统中的综合研究。随着新技术的涌现, 如分子生物学、基因组学和同位素示踪技术等的发展, P循环的研究更应该得到加强。因此, 基于国内外已有研究, 本文从(1)荒漠中P的来源、输入和输出过程;(2)荒漠中植物-土壤系统间P循环过程及机理;(3)气候变化对荒漠生态系统P循环影响机制, 并得出结论和提出展望, 旨在为P循环、生态系统能/物流的科学管理、生态系统服务价值评估、生态安全和荒漠化土地的生态恢复提供参考。
1 荒漠中磷的来源、输入和输出母岩风化是荒漠生态系统中P的重要来源, 但该过程非常缓慢, 且输入量少[6](一般为每年0.05—1.0 kg/hm2, 部分地区可以达到每年5.0 kg/hm2)。风化作用包括物理和化学风化。物理风化:荒漠昼夜温差、光照、风力和水蚀等外营力综合作用下对岩石表面碎屑化, 形成含P的细小颗粒物, 如在寒漠地区, 冻融作用加速地表岩石风化产生含P的细小颗粒物[7];化学风化:土壤微生物和隐花植物(如地衣和藓类等)通过生物化学作用促进土壤母质释放P[26-27]。除了母质风化外, 大气干湿沉降是荒漠中P的主要输入方式。在干湿沉降作用下, 颗粒物沉降和植物凋落物沉积在荒漠土壤表面, 导致P分布的浅层化和表聚性[28-30]。全球尺度而言, 非洲和欧亚大陆荒漠区的降尘输入量远高于北美(北美的年均降尘输入量为20—40 g/m2)[31-32]。另外, 荒漠中动物(爬行类、啮齿类、鸟类及蝗虫等)排泄物及动植物死亡后均成为重要的P源。
P的输出在荒漠中主要包括动植物生物量及相关产品(如薪材、牧草和动物产品)和风蚀和/或搬运过程损失。生物量及相关产品的输出主要以荒漠草原中牧草、畜牧业产品和中草药的输出为主[6, 33]。当然, 人类放牧和耕作及其他动物行为(如荒漠中动物的掘洞行为)会移动土壤, 在外营力作用下使P在该过程中损失[34-36]。荒漠中尽管降水量少(< 250mm), 但降水作用仍导致了土壤表土P的部分损失[37-38](图 1)。
![]() |
图 1 荒漠生态系统P循环示意图 Fig. 1 A schematic diagram of P cycling in desert ecosystem 1: 磷重吸收P re-uptake;2: 植物归还Plant return;3: 微生物矿化Microbial minaralization;4: 菌根吸收Micorrhiza uptake;5: 菌根释放Micorrhiza release;6: 植物根系吸收Plant root uptake;7: 释放Release;8: 固定Immobilization;9: 死亡Microbial died;10: 同化Assimilation;11: 酶水解Enzyme Hydrolysis;12: 解吸和溶解Desorption and dissolution;13: 吸附和沉淀Adsorption and sediment;14: 活化Mobilization;15: 溶解Dissolution;16: 迁移和再分配Migration and relocation;17: 生物量/产品输出Biomass/products output;18: 动物取食Animal feeding;19: 动物尸体和粪便归还Carcass and excrement return; BSC:生物土壤结皮Biological soil crust |
在荒漠生态系统中, P的形态包括有机P和无机P。有机P包括植素类, 核酸类和磷脂类;无机P包括磷酸铝类化合物(Al-P), 磷酸铁类化合物(Fe-P), 磷酸钙类化合物(Ca-P)和闭蓄态磷(O-P), 其中, Ca-P是荒漠土壤中主要的磷组分。如在库布齐沙漠, TP含量为137.21—362.09 μg/g, 其中Ca-P占了58.95%—80.05%, 其他各形态P含量的顺序为:有机P(Or-P)>吸附态P(Ads-P)>铁结合态P(Fe-P)>闭蓄态P(O-P)>铝结合态P(Al-P)[39];在阿拉善荒漠区, 土壤中Ca-P>Al-P>Fe-P[40];在巴丹吉林沙漠, 土壤中Ca-P>Or-P>Al-P>交换态P(Ex-P)> Fe-P>O-P[41]。
在荒漠中, 植物有多种策略去获取磷[13]。首先, 植物改变根系特征增加对有效P的吸收[7], 如增加植物根系与土壤接触的表面积[42-43]。其次, 植物通过分泌多种复杂的有机酸混合物(如草酸、苹果酸、琥珀酸等)、植物铁磷酸酯、糖、维生素、氨基酸、嘌呤、核苷酸、无机离子、气态分子、螯合剂和根表面的磷脂活性剂等活化结合态P, 达到吸收P和促进P循环的目的[7, 44]。此外, 在低水分、高盐分的胁迫作用下荒漠灌木根系分泌磷酸酶和植酸酶矿化土壤中有机P[14, 45-46]。同时, 一些植物如牧豆树(Prosopis juliflora (Swartz) DC.)通过根系分泌物、豚草(Ambrosia artemisiifolia L.)利用根系识别反应等方式维持一定范围的根系空间[47], 以获得足够的P供给植物地上部分生长。这种植物根系在土壤中的排他性增加了获得有效P的机会, 提升了植物的竞争力[48-49]。此外, 植物根部较高的阳离子交换能力[50-51], 根系释放的H+或HCO3-均有助于植物获取和利用土壤中的有效P和结合态P[40]。但土壤中多价阴离子结合金属离子(锌、铁、锰)会抑制植物磷酸酶和植酸酶活性, 限制P的矿化。
2.1.2 根系-菌根系统对磷的吸收菌根在荒漠植物获取P及驱动P循环中扮演着重要角色。一方面, 菌根真菌通过与植物根系形成网络系统, 扩大与土壤的接触面积, 增加植物获取土壤P的机会[26, 52]。如隔内生真菌与鼠茅属植物Vulpia ciliate和四翅滨藜(Atriplex canescens (Pursh) Nutt.)形成的网络系统有助于植物获取土壤有效P[7], 因为隔内生真菌在植物和蓝藻结皮之间每天转移营养物质的距离达1 m, 大大增加了植物获取有效P的范围[53]。另一方面, 真菌通过自身分泌物溶解磷酸岩增加植物可获取的P量[54]。然而, 荒漠区干旱程度的增加会导致菌根真菌被隔内生子囊菌所取代, 降低了菌根丰富度[53, 55]。此外, 荒漠植物的菌根侵染率受到生物土壤结皮(BSC)表面积的显著影响, 如美国犹他州东南部的沙漠地区, BSC分布区植物的菌根侵染率是裸土环境中植物的3倍[56]。
2.1.3 植物叶磷含量变化与磷循环荒漠植物叶片通过自身凋落、分泌物和重吸收的方式影响P的循环。植物凋落的叶片被分解进入土壤时增加了土壤P含量[57];不同植物凋落物通过刺激土壤磷酸酶, 对土壤有效P的循环产生了显著的影响[58]。同时, 植物叶片分泌的化合物多是水溶性的, 当叶片分泌物浸入土壤时可以使邻近的植物和微生物受益, 促进土壤P的解吸/溶解及微生物量P的矿化[7]。此外, 荒漠区干旱程度增加会增加植物对其叶片中P的重吸收, 减少其凋落物中P含量[14]。当前, 对植物叶中P含量变化原因有三种观点:一种观点认为荒漠植物叶片中P含量变化主要与土壤中P含量有关, 如克氏针茅(Stipa krylovii Roshev.)叶片的C∶P和N∶P与其所处的土壤中C∶P和N∶P具有一定的协同变化能力[36], 土壤P是植物叶片P潜在的元素库[59]。第二种观点认为荒漠植物叶片P含量变化主要因为植物自身遗传特性, 如在塔里木河上游荒漠区的4种灌木植物, 其自身遗传特性影响了叶片C∶P和N∶P, 而不是由土壤中养分含量直接决定[60]。第三种观点认为荒漠植物叶片P含量变化与降水有显著的正相关关系[61]。综上, P在土壤-植物间的循环受到植物叶片分泌物、土壤P库、植物自身遗传特性和环境的影响。
2.2 入侵植物对磷的吸收荒漠入侵植物对P的获取较本地植物具有显著的优势, 其可将非可用态P转化为有效P, 能促进土壤非可用态P的生物循环。对于荒漠而言, 入侵植物的成功是由于它们[7]:(1)比起本地植物能更有效的吸收和利用土壤中非生物有效P;(2)同样条件下对土壤有效P有更强的竞争能力。入侵植物利用土壤P的策略一方面是其根系分泌物和地上叶片渗滤液进入土壤将非可用态P转化为可用态P以供其吸收和利用;另一方面是入侵植物侵入荒漠时有少数本地植物或真菌协助其吸收土壤有效P[7]。
旱雀麦是荒漠中一种一年生草本入侵植物, 其在美国犹他州东南部荒漠秋冬季的相对增长率可以依据土壤P含量来预测[62-63]。如当土壤有效P降低时, 旱雀麦的萌发被抑制[11-12]。此外, 旱雀麦可将土壤中非可用态P转换为有效P。如在一个从未放牧过的荒漠草原, 旱雀麦侵入该环境后, 当其盖度从0%增加10%再增加到40%时, 土壤中有效P从14.6 μg/g增加到19.5 μg/g再到28.2 μg/g[64]。旱雀麦对那些本地植物不能利用的非可用态P的利用潜力使其在可控范围内有成为荒漠生态环境恢复材料的趋势。
2.3 荒漠中生物土壤结皮(BSC)对磷循环的作用 2.3.1 BSC对含磷降尘的固定BSC由蓝藻、绿藻、地衣、藓类和异养型微生物及相关的其他生物体通过菌丝体、假根和分泌物等与土壤表层颗粒胶结形成的十分复杂的复合体, 其对荒漠区土壤形成、改善土壤理化性质、调节土壤水分的再分配格局等方面有重要作用[7, 63]。BSC覆盖荒漠表面, 增加了地表粗糙度, 对大气含P降尘有很好的截留和保存能力[56, 63, 65], 防止了含P降尘流失或重新分布[66]。被BSC捕获的营养丰富的粘土颗粒增加了荒漠土壤的肥力和持水能力, 使结皮生物在较长的时间内保持代谢活性[7]。此外, BSC也为植物生长提供丰富的P源[56, 67]。
2.3.2 BSC中生物对结合态磷的释放和溶解BSC中生物对荒漠土壤中磷的释放有重要作用。如BSC中地衣呼吸代谢产生H+释放碳酸盐结合的P, 增加P的有效性;或分泌有机酸, 如柠檬酸、苹果酸、乙酸、丙酮酸、乳酸和甲酸等[11, 68]溶解土壤中结合态P[27, 69]。BSC中真菌黑曲霉和细菌青霉菌产生柠檬酸溶解土壤结合态P[70]。BSC中真菌在岩石中也能分泌酸去溶解营养物质, 并将这些营养物质直接转移到植物根系[71-72]。此外, BSC中蓝藻可以分泌金属螯合剂稳定土壤溶液中的金属而增加有效P含量[11, 73];也可以分泌肽N和核黄素, 在螯合剂作用下与磷酸三钙、铜、锌、镍和铁形成络合物, 保持植物所需的有效营养[74];还可以分泌乙二醇酯, 刺激植物摄取P[75]。
BSC中的大多数蓝藻、绿藻、地衣和藓类会分泌磷酸酶到周围的土壤, 导致有机磷酸盐水解释放P, 这些P会立刻被微生物固定并转移到宿主植物根上, 或者被腐殖质稳定下来[76-79]。此外, BSC中蓝藻能固定N, 当土壤N升高时, 磷酸酶含量和活性增加[21, 80], 进而能增加土壤有效P[81]。BSC发育较好的环境中磷酸酶的活性相对较高[82]。然而, 由于磷酸酶与土壤有机质高度相关, 而荒漠土壤中有机质含量相对较低, 导致磷酸酶活性也相对较低[83]。
3 气候变化对荒漠中磷循环的影响机制气候变化对荒漠中P循环的影响, 当前可通过温度、降水和N沉降等实现。三者可以直接或间接影响土壤中有效P含量, 限制植物获取有效P, 改变荒漠生态系统植被的功能和稳定性[84-86]。下面主要讨论干旱、降水节律和N沉降对荒漠生态系统P循环的影响机制。
3.1 干旱对磷循环的影响干旱对荒漠中P循环的影响主要通过影响植物和微生物实现。对植物而言, 在气温上升而降水下降的荒漠区, 干旱增加降低了植物叶片P含量[23], 使荒漠中P的生物地球化学循环受到限制[7];同时, 干旱降低了P的有效性而使植物吸收P受限, 阻碍土壤中营养物质扩散和能量流动[18-19, 87]。对微生物而言, 干旱阻碍土壤中P的矿化过程。如干-湿交替、高温干旱和辐射损伤导致多达58%的土壤微生物死亡[88], 使得这些有机P会和降尘一起聚集在土壤表层[89], 成为荒漠中重要的P源。微生物对荒漠生态系统至关重要, 其细胞中的P大部分以核酸和磷脂的形式存在, 并在死亡后能补充土壤中P的匮乏[90]。如在澳大利亚干旱土壤中微生物死亡释放的P占土壤水溶性P的95%, 可使水溶性土壤P增加到1900%[91]。此外, 土壤微生物活动的独立性和干-湿交替循环过程通过破坏有机质涂层, 分离和移动土壤胶体来增加土壤有机P的溶解度, 从而增加土壤溶液中P含量[92]。然而, 这些驱动力并不经常出现[93]。
3.2 降水节律对磷循环的影响水是荒漠中P循环的第一驱动力[94], 更有效地吸收或使用水分的植物比其他植物在获取营养上具有竞争优势。土壤水分的减少将减缓所有释放生物有效P的非生物过程。荒漠中脉冲降水事件导致的土壤快速湿润、干旱的频率和持续时长等通过影响植物和微生物来影响P的循环。对荒漠植物而言, 水分与养分吸收之间的正反馈非常重要[48, 94], 如降水减少会增加不易降解的凋落物的产生, 进一步减缓凋落物的分解速率[7]。此外, 植物分泌的磷酸酶活性主要依赖于土壤水分有效性, 降水减少将使它们的有效性降低[95];磷酸酶添加试验表明在土壤湿润时, 干旱土壤中高达87%的有机P是可水解的[96-97];磷酸酶活性与降水和温度的关系也影响荒漠区结合态P的释放。此外, 适宜的降水有利于一年生植物的生长, 因为一年生植物通常比多年生植物更易受低P条件的限制[51]。对于微生物而言, 虽然温度升高会增加土壤微生物活性, 但土壤水分减少会限制其活性时间, 进而导致微生物丰度和活性的降低[14]。当温度变暖, 降雨出现, 土壤微生物种群和活性会迅速增加, 进而增加土壤有效P含量[57], 促进了P的循环过程。然而, 降水的持续时长也影响P的矿化和固定过程。
大多数情况下, 植物和微生物对不同荒漠环境变化有不同的响应, 这有利于它们在资源的获取上进行协同作用。如当降水量减少时, 土壤表层微生物率先对降水事件作出反应并开始进行生命活动, 提供植物所需的养分[94];当降水量持续增加时, 维管植物的生命活动则占据主导地位[98-100]。然而, 较大的降水会减少土壤微生物和植物在养分获取和利用方面的合作, 如植物在降水充足时可以直接摄取可水解的有机P[101-103]。此外, 湿润土壤条件能降低土壤pH, 溶解碳酸盐, 使结合态P转变为生物有效P, 如在科罗拉多高原地区和奇瓦瓦沙漠, 冬季潮湿寒冷的环境增加了土壤有效P含量[62-63, 104]。另外由于荒漠降水量少, 如减少微生物生物量、植物生物量、土壤水分、土壤P向根际圈的扩散量和植物根系对P的吸收量均会降低土壤对P的吸附。
3.3 氮沉降对磷循环的影响N沉降通过影响土壤中磷酸酶活性、植物和微生物的生态化学计量关系来影响P的循环。土壤中N的增加一方面能提高磷酸酶活性, 激发束缚P的释放, 提高土壤有效P[21, 80];另一方面也增加土壤P的吸附和沉淀, 导致荒漠环境出现P限制现象[20-21]。目前在荒漠生态系统中N和P之间的阈值还不清楚。而在荒漠草原, 过高的植物叶片N∶P增加了P对荒漠植物的生长限制[105], 较低的N∶P也限制了植物叶片的生长[24]。前者认为植物叶片生长与P呈正相关, 与N呈负相关, 符合“生长速率假说”;后者认为植物叶片的增长与P呈负相关, 与N呈正相关, 违背“生长速率假说”。这两种结果都忽视了植物种间差异和长期以来植物与环境之间的协同进化关系。对荒漠草原而言, N沉降增加, 最大N矿化率和硝化率消耗P, 使环境中P减少, P便成了植物生长的限制因子[106]。此外, 在荒漠草原中, N添加不仅增大了BSC的N∶P, 改变C∶N∶P, 影响P的生物循环过程[107], 也增加了土壤微生物量N和N∶P, 最终影响植物群落组成。当然, N沉降与P的关系在评估荒漠绿洲过渡带土地的利用程度、维护绿洲生态安全和绿洲稳定上具有重要作用。
4 结论与展望目前荒漠生态系统P循环取得的主要结论:(1)大气降尘和母质风化输入P, 干湿沉降作用增加植物基部土壤P含量;(2)植物通过根系和叶片分泌有机物或与其他生物(如真菌和细菌)形成共生或合作系统获取有效P;(3)入侵植物能高效利用荒漠土壤中非生物有效P;(4)BSC有机体通过分泌胞外聚合物、有机酸、磷酸酶和呼吸代谢H+来释放土壤有效P, 促进P的生物循环;(5)气候变化下, 干旱和降雨改变磷酸酶活性、阻碍P循环的非生物过程和生物过程, 进而影响荒漠中营养物质扩散和能量流动;N沉降改变土壤微生物活性、磷酸酶活性和N∶P等来改变P循环。因此, 基于以上结论, 结合当前国内外研究热点和重点及研究物质循环的新技术的涌现(分子生物学、基因芯片和同位素示踪等), 遂对国内荒漠生态系统P循环的研究方向和科学问题提出如下展望:(1)P在荒漠生态系统中的分配、存在形态及动态平衡;(2)土壤微生物对荒漠植物获取土壤有效P的驱动作用[98];(3)入侵植物对P循环的影响与潜在生态风险评估;(4)利用分子生物学和基因组学方法揭示真菌-植物根系间P循环的基因调控机制[6, 17, 99];(5)微生物分泌物、土壤磷酸酶类(包括磷酸单酯酶、磷酸二酯酶和三磷酸单酯水解酶)和作用于含磷酸酐和N-P键的酶对土壤P循环的调控[6-7];(6)气候变化(干旱、高温和降水节律变化)如何影响P的生物和非生物转化过程[84, 86, 100];(7)基于同位素示踪和生态化学计量学理论量化荒漠生态系统P循环路径及其稳定性维持机制[108-110]。
[1] |
Guan Y, He B, Li X, Yin C, Qiu S. Desertification assessment and trend analysis using MODIS data. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, 2017, 5739-5742. |
[2] |
Xu D, Ding X. Assessing the impact of desertification dynamics on regional ecosystem service value in north China from 1981 to 2010. Ecosystem Services, 2018, 30: 172-180. DOI:10.1016/j.ecoser.2018.03.002 |
[3] |
Burrell A L, Evans J P, Kauwe M G D. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 2020, 11(1): 3853. DOI:10.1038/s41467-020-17710-7 |
[4] |
Reynolds J F, Smith D M S, Lambin E F, Turner B L, Mortimore M, Batterbury S P J, Downing T E, Dowlata H, Roberto J F, Herrick J E. Global desertification: building a science for dryland development. Science, 2007, 316(5826): 847-851. DOI:10.1126/science.1131634 |
[5] |
Mea M E A. Ecosystems and human well-being: desertification synthesis. Ecosystems, 2005, 1-100. |
[6] |
乌力吉, 李响, 赵萌莉, 白永飞. 放牧对草地生态系统磷循环调控机制的研究进展与展望. 科学通报, 2020, 23: 2469-2482. |
[7] |
Belnap J. Biological Phosphorus Cycling in Dryland Regions // Bünemann E, Oberson A, Frossard E eds. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Soil Biology, Heidelberg: Springer, 2011: 371-406.
|
[8] |
James J J, Tiller R L, Richards J H. Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology, 2005, 93(1): 113-126. DOI:10.1111/j.0022-0477.2004.00948.x |
[9] |
马斌, 周志宇, 张丽莉, 高文星. 阿拉善荒漠区土壤因子与白沙蒿人工种群生长的主成分分析. 西北植物学报, 2007, 27(5): 995-999. DOI:10.3321/j.issn:1000-4025.2007.05.023 |
[10] |
Schlesinger W H, DeLucia E H, Billings W D. Nutrient-use efficiency of woody plants on contrasting soils in the western Great Basin, Nevada. Ecology, 1989, 70: 105-113. DOI:10.2307/1938417 |
[11] |
Belnap J, Sherrod S K, Miller M E. Effects of soil amendments on germination and emergence of downy brome (Bromus tectorum) and Hilaria jamesii. Weed Science, 2003, 51(3): 371-378. DOI:10.1614/0043-1745(2003)051[0371:EOSAOG]2.0.CO;2 |
[12] |
Gundale M J, Sutherland S, DeLuca T H. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum. Ecography, 2008, 31: 201-210. DOI:10.1111/j.0906-7590.2008.5303.x |
[13] |
George T S, Fransson A M, Hammond J P, White P J. Phosphorus nutrition: rhizosphere processes, plant response and adaptations // Bünemann E, Oberson A, Frossard E eds. Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, Springer: Heidelberg, 2011: 253-279.
|
[14] |
Sardans J, Penelas J, Estiarte M. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant and Soil, 2006, 289(1-2): 227-238. DOI:10.1007/s11104-006-9131-2 |
[15] |
Belnap J, Büdel B, Lange O L. Biological soil crusts: characteristics and distribution // Belnap J, Lange O L eds. Biological soil crusts: structure, function, and management. Berlin: Springer, 2003: 3-30.
|
[16] |
He M Z, Hu R, Jia R L. Biological soil crusts enhance the recovery of nutrient levels of surface dune soil in arid desert regions. Ecological Indicators, 2019, 106: 105497. DOI:10.1016/j.ecolind.2019.105497 |
[17] |
Nelson C, Giraldo-Silva A, Garcia-Pichel F. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, microcoleus vaginatus. The ISME Journal, 2021, 15: 282-292. DOI:10.1038/s41396-020-00781-1 |
[18] |
Sanaullah M, Rumpel C, Charrier X, Chabbi A. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?. Plant and Soil, 2012, 352: 277-288. DOI:10.1007/s11104-011-0995-4 |
[19] |
Lambers H, Chapin F S, Pons T L. Plant physiological ecology. New York: Springer, 2008.
|
[20] |
Aerts R, Bobbink R. The impact of atmospheric nitrogen deposition on vegetation in terrestrial non-forest ecosystems // Langan S eds. The impacts of nitrogen deposition on natural and semi-natural ecosystems. Dordrecht: Kluwer, 1999: 85-122.
|
[21] |
Phuyal M, Artz R, Sheppard L, Leith I, Johnson D. Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an Ombrotrophic bog. Plant Ecology, 2008, 196(1): 111-121. DOI:10.1007/s11258-007-9338-1 |
[22] |
Li Y, Niu S, Yu G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 2016, 22: 934-943. DOI:10.1111/gcb.13125 |
[23] |
He M Z, Dijkstra F A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 2014, 204(4): 924-931. DOI:10.1111/nph.12952 |
[24] |
Niu D, Zhang C, Ma P, F Hua F, Elser J J. Responses of leaf C∶N∶P stoichiometry to water supply in the desert shrub zygophyllum xanthoxylum. Plant Biology, 2019, 21: 82-88. DOI:10.1111/plb.12897 |
[25] |
程磊磊, 却晓娥, 杨柳, 姚雪玲, 卢琦. 中国荒漠生态系统: 功能提升、服务增效. 中国科学院院刊, 2020, 35(6): 690-698. |
[26] |
Gadd G M, Watkinson S C, Dyer P S. Fungi in the environment. New York: Cambridge University Press, 2007.
|
[27] |
Jones D L, Oburger E. Solubilization of phosphorus by soil microorganisms // Bünemann E, Oberson A, Frossard E eds. Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, Heidelberg: Springer, 2011: 179-208.
|
[28] |
Jobbágy E G, Jackson R B. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 2004, 85(9): 2369-2379. DOI:10.1890/03-0244 |
[29] |
McCulley R L, Jobbagy E G, Pockman W T, Jackson R B. Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 2004, 141: 620-628. DOI:10.1007/s00442-004-1687-z |
[30] |
He M Z, Zhang K, Tan H J, Hu R, Su J Q, Wang J, Huang L, Zhang Y F, Li X R. Nutrient levels within leaves, stems, and roots of the xeric species reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology and Evolution, 2015, 5(7): 1494-1503. DOI:10.1002/ece3.1441 |
[31] |
Okin G S, Mahowald N, Chadwick O A, Artaxo P. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles, 2004, 18: GB2005. |
[32] |
Field J P, Belnap J, Breshears D D, Neff J C, Okin G S, Whicker J J, Painter T H, Ravi S, Reheis M C, Reynolds R L. The ecology of dust. Frontiers in Ecology and the Environment, 2010, 8(8): 423-430. DOI:10.1890/090050 |
[33] |
王文彪. 沙漠药用植物资源. 呼和浩特: 内蒙古大学出版社, 2013.
|
[34] |
Neff J C, Reynolds R, Belnap J, Lamothe P. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecological Applications, 2005, 15(1): 87-95. DOI:10.1890/04-0268 |
[35] |
Hiernaux P, Bielders C L, Valentin C, Bationo A, Fernandez-Rivera S. Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. Journal of Arid Environments, 1999, 41(3): 231-245. DOI:10.1006/jare.1998.0475 |
[36] |
杨林, 马秀枝, 李依倩. 放牧对荒漠草原克氏针茅种群和土壤生态化学计量特征的影响. 西北植物学报, 2020, 40(2): 150-156. |
[37] |
Reynolds R, Neff J C, Reheis M, Lamothe P. Atmospheric dust in modern soil on aeolian sandstone, Colorado Plateau (USA): Variation with landscape position and contribution to potential plant nutrients. Geoderma, 2006, 130(1-2): 108-123. DOI:10.1016/j.geoderma.2005.01.012 |
[38] |
Bestlemeyer B T, Brown J R, Havstad K M, Fredrickson E L. A holistic view of an arid ecosystem: a synthesis of research an dits applications // Havstad K M, Huenneke L F, Schlesinger W H eds. Structure and function of a Chihuahuan desert ecosystem: the Jornada Basin long-term ecological research site. Oxford: Oxford University Press, 2006: 354-368.
|
[39] |
李北罡, 郭博书. 库布齐沙漠颗粒物中磷的化学形态分析. 岩矿测试, 2007(1): 9-12. DOI:10.3969/j.issn.0254-5357.2007.01.003 |
[40] |
Ma B, Zhou Z Y, Zhang C P, Zhang G, Hu Y J. Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. Journal of Arid Environments, 2009, 73(1): 55-61. DOI:10.1016/j.jaridenv.2008.08.006 |
[41] |
王凤英, 李莹, 杨小红, 郭博书. 巴丹吉林沙漠颗粒物中磷的化学形态分析. 干旱区资源与环境, 2010, 24(5): 196-200. |
[42] |
Lynch J P, Deikman J. Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic and ecosystem processes. American Society of Plant Physiologists, Rockville, 1998.
|
[43] |
Lajtha K, Harrison A F. Strategies of phosphorus acquisition and conservation by plant species and communities // Tiessen H eds. Phosphorus in the global environment. Chichester: Wiley, 1995: 140-147.
|
[44] |
Callaway R M. Positive interactions and interdependence in plant communities. Dordrecht: Springer, 2007.
|
[45] |
Estiarte M, Penuelas J, Sardans J, Emmett B A, Sowerby A, Beier C, Schmidt I K, Tietema A, Van Meeteren M J M, Kovacs Lang E, Mathe P, De Angelis P, De Dato G. Root-surface phosphatase activity in shrublands across a European gradient: effects of warming. Journal of Environmental Biology, 2008, 29(1): 25-29. |
[46] |
Li X, Sarah P. Enzyme activities along a climatic transect in the Judean Desert. Catena, 2003, 53(4): 349-363. DOI:10.1016/S0341-8162(03)00087-0 |
[47] |
Schenk H J, Callaway R M, Mahall B E. Spatial root segregation: Are plants territorial?. Advances in Ecological Research, 1999, 28(8): 145-180. |
[48] |
Caldwell M M, Richards J H. Competing root systems: morphology and models of absorption. // Givnish TJ eds. On the economy of plant form and function. Cambridge: Cambridge University Press, 1986: 251-273.
|
[49] |
Casper B B, Jackson R B. Plant competition underground. Annual Review of Ecology and Systematics, 1997, 28: 545-570. DOI:10.1146/annurev.ecolsys.28.1.545 |
[50] |
Drake M, Steckel J E. Solubilization of soil and rock phosphate as related to root cation exchange capacity. Soil Science Society of America Journal, 1995, 19(4): 449-450. |
[51] |
Marschner H. Ion uptake mechanisms of individual cells and roots: short-distance transport // Marschner H eds. Mineral nutrition of higher plants. San Diego: Academic Press, 1995: 6-78.
|
[52] |
Jansa J, Finlay R, Wallander H, Smith F A, Smith S E. Role of mycorrhizal symbioses in phosphorus cycling // Bünemann E, Oberson A, Frossard E eds. Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, Heidelberg: Springer, 2011: 147-178.
|
[53] |
Green L E, Porras-Alfaro A, Sinsabaugh R L. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. Journal of Ecology, 2008, 96(5): 1076-1085. DOI:10.1111/j.1365-2745.2008.01388.x |
[54] |
Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 2005, 53(1): 173-189. |
[55] |
Barrow J R, Osuna P. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments, 2002, 51(3): 449-459. DOI:10.1006/jare.2001.0925 |
[56] |
Belnap J, Prasse R, Harper K T. Influence of biological soil crusts on soil environments and vascular plants // Belnap J, Lange OL eds. Biological soil crusts: structure, function, and management. Berlin: Springer, 2003: 281-300.
|
[57] |
Whitford W G. Comparison of ecosystem processes in the Nama-karoo and other deserts. // Deand W R J, Milton S J eds. The Karoo: ecological patterns and processes. Cambridge: Cambridge University Press, 1999: 291-313.
|
[58] |
Dornbush M E. Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biology and Biochemistry, 2007, 39(9): 2241-2249. DOI:10.1016/j.soilbio.2007.03.018 |
[59] |
杨阳. 宁夏荒漠草原区不同植物群落多样性及化学计量特征研究[D]. 银川: 宁夏大学, 2015.
|
[60] |
罗艳, 贡璐, 朱美玲, 安申群. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征. 生态学报, 2017, 37(24): 8326-8335. |
[61] |
宋一凡, 卢亚静, 刘铁军, 刘慧文, 闫泽宇, 王慧琪. 荒漠草原不同雨量带土壤-植物-微生物C、N、P及其化学计量特征. 生态学报, 2020, 40(12): 4011-4023. |
[62] |
Miller M E, Belnap J, Beatty S W, Webb B L. Effects of water additions, chemical amendments, and plants on in situ measures of nutrient bioavailability in calcareous soils of southeastern Utah, USA. Plant and Soil, 2006, 288(1-2): 19-29. DOI:10.1007/s11104-006-9014-6 |
[63] |
Miller M E, Belnap J, Beatty S, Reynolds R L. Performance of Bromus tectorum L.in relation to soil properties, water additions, and chemical amendments in calcareous soils of southeastern Utah, USA. Plant and Soil, 2006, 288(1-2): 1-18. DOI:10.1007/s11104-006-0058-4 |
[64] |
Hansen E S. Epilithic lichens on iron- and copper-containing crusts at Qeqertarsuaq, Central West Greenland. Graphis Scripta, 1999, 10: 7-12. |
[65] |
Bowker M A, Belnap J, Davidson D W, Goldstein H. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. Journal of Applied Ecology, 2006, 43(1): 152-163. DOI:10.1111/j.1365-2664.2006.01122.x |
[66] |
Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 7123-7127. DOI:10.1073/pnas.121094298 |
[67] |
Crain G, Mclaren J, Brunner B, Darrouzet-Nardi A. Biologically available phosphorus in biocrust-dominated soils of the Chihuahuan Desert. Soil Systems, 2018, 2(4): 56. DOI:10.3390/soilsystems2040056 |
[68] |
Whitton B A, Al-Shehri A M, Ellwood N T W, Turner B L. Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes //Turner BL, Frossard E, Baldwin D S (eds) Organic phosphorus in the environment. Cambridge: CABI, 2005: 205-241.
|
[69] |
Jones D, Wilson M J. Chemical activity of lichens on mineral surfaces- A review. International Biodeterioration, 1985, 21(2): 99-104. |
[70] |
Barroso C B, Nahas E. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, 2005, 29(1): 73-83. DOI:10.1016/j.apsoil.2004.09.005 |
[71] |
Bornyasz M A, Graham R C, Allen M F. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma, 2005, 126(1-2): 141-160. DOI:10.1016/j.geoderma.2004.11.023 |
[72] |
Van Breemen N, Finlay R D, Lundström U S, Jongmans A G, Giesler R, Melderud P A. Mycorrhizal weathering: A true case of mineral plant nutrition?. Biogeochemistry, 2000, 49(1): 53-67. DOI:10.1023/A:1006256231670 |
[73] |
McLean R J C, Beveridge T J. Metal-binding capacity of bacterial surfaces and their ability to form mineralized aggregates // Ehrlich H L, Brierley C L (eds) Microbial mineral recovery. New York: McGraw-Hill, 1990: 185-222.
|
[74] |
Browning T J, Achterberg E P, Yong J C, Rapp I, Utermann C, Engel1 A, Moore C M. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nature Communications, 2017, 8: 15465. DOI:10.1038/ncomms15465 |
[75] |
Fogg G E. The extracellular products of algae. Oceanography and Marine Biology, 1966, 4: 195-212. |
[76] |
Turner B L, Baxter R, Ellwood N T W, Whitton B A. Seasonal phosphatase activities of mosses from Upper Teesdale northern England. Journal of Bryology, 2003, 25: 189-200. DOI:10.1179/037366803235001670 |
[77] |
Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil // Bünemann E, Oberson A, Frossard E eds. Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, Heidelberg: Springer, 2011: 224-252.
|
[78] |
Sinsabaugh R S. Enzymic analysis of microbial pattern and process. Biology and Fertility of Soils, 1994, 17(1): 69-74. DOI:10.1007/BF00418675 |
[79] |
Lindahl B D, Finlay R D, Cairney J W G. Enzymatic activities of mycelia in mycorrhizal fungal communities // Dighton J, White J F, Oudemans P eds. The fungal community: its organization and role in the ecosystem. Boca Raton: Taylor and Francis, 2005: 331-348.
|
[80] |
Collins S L, Sinsabaugh R L, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin L H. Pulse dynamics and microbial processes in arid land ecosystems. Journal of Ecology, 2008, 96(3): 413-420. DOI:10.1111/j.1365-2745.2008.01362.x |
[81] |
Zou X, Binkley D, Caldwell B A. Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in two experimental forests. Soil Science Society of America Journal, 1995, 59: 1452-1458. DOI:10.2136/sssaj1995.03615995005900050035x |
[82] |
Bolton H J, Smith J L, Link S O. Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biology and Biochemistry, 1993, 25(5): 545-552. DOI:10.1016/0038-0717(93)90192-E |
[83] |
Sinsabaugh R L, Lauber C L, Weintraub M N, Ahmed B, Allison S D, Crenshaw C, Contosta A R, Cusack D, Frey S, Gallo M E, Gartner T B, Hobbie S E, Holland K, Keeler B L, Powers J S, Stursova M, Takacs-Vesbach C, Waldrop M P, Wallenstein M D, Zak D R, Zeglin L H. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264. DOI:10.1111/j.1461-0248.2008.01245.x |
[84] |
Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years. Nature, 2012, 491(7424): 435-438. DOI:10.1038/nature11575 |
[85] |
He M Z, Dijkstra F A, Zhang K, Li X R, Tan H J, Gao Y H, LI G. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Scientific Reports, 2014, 4: 6932. |
[86] |
Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 2018, 24: 3344-3356. DOI:10.1111/gcb.14093 |
[87] |
Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007, 88: 1386-1394. DOI:10.1890/06-0219 |
[88] |
Kieft TL, Soroker E, Firestone M K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry, 1987, 19(2): 119-126. DOI:10.1016/0038-0717(87)90070-8 |
[89] |
Castenholz R W, Garcia-Pichel F. Cyanobacterial responses to UV-radiation // Whitton B A, Potts M eds. The ecology of cyanobacteria. Dordrecht: Kluwer, 2000: 591-611.
|
[90] |
Turner B L, Haygarth P M. Biogeochemistry: phosphorus solubilization in rewetted soils. Nature, 2001, 411(6835): 258-258. |
[91] |
Turner B L, Driessen J P, Haygarth P M, McKelvie I D. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry, 2003, 35(1): 187-189. DOI:10.1016/S0038-0717(02)00244-4 |
[92] |
Blackwell M S A, Brookes P C, De La Fuente-Martinez N, Murray P J, Snars K E, Williams J K, Haygarth P M. Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate. Biology and Fertility of Soils, 2009, 45(6): 635-643. DOI:10.1007/s00374-009-0375-x |
[93] |
Butterly C R, Bünemann E K, McNeill A M, Baldock J A, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416. DOI:10.1016/j.soilbio.2009.03.018 |
[94] |
李新荣, 周海燕, 王新平, 刘立超, 张景光, 陈国雄, 张志山, 刘玉冰, 谭会娟, 高艳红. 中国干旱沙区的生态重建与恢复: 沙坡头站60年重要研究进展综述. 中国沙漠, 2016, 36(2): 247-264. |
[95] |
Sardans J, Penelas J, Ogaya R. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. European Journal of Soil Biology, 2008, 44(5-6): 509-520. DOI:10.1016/j.ejsobi.2008.09.011 |
[96] |
Nadeau J, Qualls R, Nowak R, Blank R. The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert. Biogeochemistry, 2007, 82(3): 305-320. DOI:10.1007/s10533-007-9077-3 |
[97] |
Turner B L, Cade-Menun B J, Westermann D T. Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the Western United States. Soil Science Society of America Journal, 2003, 67(4): 1168-1179. DOI:10.2136/sssaj2003.1168 |
[98] |
Yuan Z Y, Chen H Y H, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2011, 2(1): 344. DOI:10.1038/ncomms1346 |
[99] |
Sawers R J H, Svane S F, Quan C, Grønlund M, Wozniak B, Gebreselassie M, González-Muñoz E, Montes R A C, Baxter I, Goudet J, Jakobsen I, Paszkowski U. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214: 632-643. DOI:10.1111/nph.14403 |
[100] |
Reichmann L G, Sala O E, Peters D P C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology, 2013, 94(2): 435-443. DOI:10.1890/12-1237.1 |
[101] |
White C S, Moore D I, Craig J A. Regional-scale drought increases potential soil fertility is semiarid grasslands. Biology and Fertility of Soils, 2004, 40(1): 73-78. DOI:10.1007/s00374-004-0744-4 |
[102] |
Stursova M, Crenshaw C L, Sinsabaugh R L. Microbial responses to long-term N deposition in a semiarid grassland. Microbial Ecology, 2006, 51(1): 90-98. DOI:10.1007/s00248-005-5156-y |
[103] |
Belnap J, Phillips S L, Miller M E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, 2004, 141(2): 306-316. DOI:10.1007/s00442-003-1438-6 |
[104] |
Lajtha K, Schlesinger W H. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology, 1988, 69(1): 24-39. DOI:10.2307/1943157 |
[105] |
Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, Lopez-Pina J E, Romo-Leon J R. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology, 2018, 219(7): 775-788. DOI:10.1007/s11258-018-0833-3 |
[106] |
West N, Griffin R, Jurinak J. Comparison of phosphorus distribution and cycling between adjacent native semidesert shrub and cultivated grass-dominated ecosystems. Plant and Soil, 1984, 81(2): 151-164. DOI:10.1007/BF02197147 |
[107] |
Liu J, Liu W, Long X E, Chen Y, Wang X. Effects of nitrogen addition on C∶N∶P stoichiometry in moss crust-soil continuum in the N-limited Gurbantünggüt Desert, Northwest China. European Journal of Soil Biology, 2020, 98: 103174. DOI:10.1016/j.ejsobi.2020.103174 |
[108] |
Delgado-Baquerizo M, Maestre F T, Gallardo A, Bowker M A, Wallenstein M D, Quero J L, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira J A, Chaieb M, Conceição A A, Derak M, Eldridge D J, Escudero A, Espinosa C I, Gaitán J, Gatica M G, Gómez-González S, Guzman E. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502: 672-676. DOI:10.1038/nature12670 |
[109] |
Penelas J, Poulter B, Sardans J, CiaisP V D V, Marijn V D V, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4: 2934. DOI:10.1038/ncomms3934 |
[110] |
Spohn M. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Global Change Biology, 2020, 26: 4169-4177. DOI:10.1111/gcb.15154 |