生态学报  2021, Vol. 41 Issue (21): 8331-8340

文章信息

罗勇, 俞晓磊, 黄晖
LUO Yong, YU Xiaolei, HUANG Hui
悬浮物对造礁石珊瑚营养方式的影响及其适应性研究进展
Effect of suspended sediment on the nutritional mode of scleractinian corals and their adaptability: state of knowledge and research
生态学报. 2021, 41(21): 8331-8340
Acta Ecologica Sinica. 2021, 41(21): 8331-8340
http://dx.doi.org/10.5846/stxb201908071663

文章历史

收稿日期: 2019-08-07
网络出版日期: 2021-07-05
悬浮物对造礁石珊瑚营养方式的影响及其适应性研究进展
罗勇1,2,3,5 , 俞晓磊1,2,3,5 , 黄晖1,2,3,4     
1. 中国科学院南海海洋研究所, 热带海洋生物资源与生态重点实验室, 广州 510301;
2. 三亚中科海洋研究院, 海南省热带海洋生物技术重点实验室, 三亚 572000;
3. 海南三亚海洋生态系统国家野外科学观测研究站, 三亚 572000;
4. 广东省应用海洋生物学重点实验室, 广州 510301;
5. 中国科学院大学, 北京 100049
摘要: 营养方式是造礁石珊瑚获取能量与营养物质的基础,影响其生长与分布。近年来珊瑚礁区悬浮物含量与组分结构发生显著变化,其对造礁石珊瑚营养方式的诸多影响正成为当前研究热点。研究系统综述了珊瑚礁区悬浮物变化特征、悬浮物对造礁石珊瑚营养方式的影响及其适应性研究现状。发现近年来人类活动加剧与强降雨事件频发是驱动珊瑚礁,尤其是近岸珊瑚礁区悬浮物含量递增、组分改变与变频加剧的主因;悬浮物变化对造礁石珊瑚光合自养与异养营养的影响存在显著的种间差异,这主要与悬浮物消光效应、生物可利用性及造礁石珊瑚种类密切相关。虽然少数种类造礁石珊瑚具光合可塑性或异养可塑性,能在高含量悬浮物存在的弱光环境中较好生长。然而对绝大多数造礁石珊瑚而言,其营养方式适应性较差,无法在悬浮物影响下较好地获取生命活动所需的能量与营养物质,进而难以生存。总体来说,悬浮物被认为是近年来影响造礁石珊瑚生长与分布的重要环境因子之一,而关于造礁石珊瑚营养方式对悬浮物变化的响应及其适应机制,当前研究仍较薄弱,需要进一步加强相关研究。
关键词: 悬浮物    造礁石珊瑚    营养方式    影响    适应性    
Effect of suspended sediment on the nutritional mode of scleractinian corals and their adaptability: state of knowledge and research
LUO Yong1,2,3,5 , YU Xiaolei1,2,3,5 , HUANG Hui1,2,3,4     
1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2. Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China;
3. Hainan Sanya Marine Ecosystem National Observation and Research Station, SCSIO, Sanya 572000, China;
4. Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China;
5. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The nutritional mode is the basis for scleractinian corals to obtain energy and nutrients, which affects their growth and distribution. In recent years, the content and composition of suspended sediment in coral reefs have changed significantly, and many effects on the nutritional mode of scleractinian corals are becoming the focus of current research. This article reviewed the characteristics of the suspended sediment changes in coral reefs, the effects of suspended sediment on the nutritional mode of scleractinian corals and their adaptability. The results show that the intensification of human activities and the frequent occurrence of heavy rainfall events in recent years are the main reasons driving the increase in suspended sediment concentration, composition changes and frequency conversion in coral reefs, especially in fringing reefs. The influences of suspended sediment on autotrophy and heterotrophy of scleractinian corals are significantly different, which are mainly related to the extinction effect and bioavailability of suspended sediment, and the species of scleractinian corals. Although some species of scleractinian corals have photosynthetic plasticity or heterotrophic plasticity, they can grow well in low-light environments where high levels of suspended sediment exist. However, for the majority of scleractinian corals, the adaptability of nutritional mode is poor, so they can't obtain the energy and nutrients needed for living better under the influence of suspended sediment, which makes them difficult to survive. Overall, suspended sediment is considered to be one of the important environmental factors affecting the growth and distribution of scleractinian corals in recent years. However, the present studies on the response and adaptability mechanism of the nutritional mode of scleractinian corals to the change of suspended sediment are still rare, and further research is needed.
Key Words: suspended sediment    scleractinian corals    nutritional mode    effect    adaptability    

造礁石珊瑚是典型的混合营养型生物, 即在其通过共生虫黄藻进行光合自养的同时[1], 也能以触手、粘液和刺细胞等结构捕获食物进行异养营养[2]。两种营养方式紧密相连、互为补充, 共同为造礁石珊瑚提供生命活动所需的能量与营养物质[3-6]。近年来全球各地造礁石珊瑚覆盖率的急剧下降与群落结构的显著改变[7-11], 即与部分造礁石珊瑚营养方式受环境影响密切相关[12-15]

当前, 研究报道影响造礁石珊瑚营养方式的主要因素有海水升温[16-17]与酸化[18]、水体富营养化[19]、有机物污染[20]、生物病害[21]和沉积物覆盖[22]等, 而关于水体悬浮物变化对造礁石珊瑚营养方式影响的研究则相对较少。悬浮物作为珊瑚礁区水体重要组分, 正常情况下其含量较低且组分稳定[23-24]。然而, 随着热带地区人类活动干扰加剧[25-27]和强降雨事件频发[28-30], 外源物质的大量输入显著地改变了珊瑚礁区悬浮物含量与组成[31-32], 进而对造礁石珊瑚生长产生重要影响[13, 33-34]。当前, 虽然已有大量研究认为水体悬浮物增加降低了造礁石珊瑚幼体补充率[35-36]、钙化速率[37-38]、生长速率等[39-41], 是导致大多造礁石珊瑚死亡、覆盖率减低, 进而引发珊瑚礁急剧退化的主因[13-14, 42-44]。但事实上, 随着人们对全球珊瑚白化与水体浑浊事件的持续关注, 陆续有报道指出部分珊瑚礁, 尤其是邻近人口密集区的近岸珊瑚礁, 其水体浑浊却有少数种类造礁石珊瑚能在其中生长良好, 珊瑚群落整体呈低多样性、高覆盖率特征[34, 39, 45-48]。这表明悬浮物变化对造礁石珊瑚生长的影响效应存在明显的种间差异[49-51], 近年来,越来越多的学者认识到这种差异主要与造礁石珊瑚营养方式对悬浮物变化的响应及其适应性有关[50, 52-55], 进而积极地开展相关研究。

悬浮物变化对造礁石珊瑚营养方式的诸多影响正成为当前研究热点。为此, 本文结合国内外相关研究, 系统地综述了珊瑚礁区悬浮物变化特征、悬浮物对珊瑚营养方式的影响及其适应性等研究现状, 在此基础上指出当前存在的问题, 并提出未来的研究展望。这将有助于明确珊瑚礁区悬浮物变化特征及其驱动主因, 预判悬浮物影响下的造礁石珊瑚群落演变趋势, 进而为造礁石珊瑚生存环境的改善及下一步研究提供参考。

1 珊瑚礁区悬浮物变化特征

与以往相比, 当前珊瑚礁区悬浮物变化显著。关于引发珊瑚礁区悬浮物变化的原因, 国内外虽然已有大量研究报道, 但其实质却与悬浮物来源发生异常有关。这主要体现在两方面, 其一是近岸森林砍伐[56]、土地开垦[57]、海岸工程建设[58]、城市污水排放[59]等人类活动加剧与强降雨事件频发导致的大量泥沙[60-62]、重金属[63]、人类排泄物[32]、植被碎屑[64]、持久性污染物[65]等陆源性物质注入珊瑚礁区, 使其外源性悬浮物显著增加所致;而另一方面则与航道清淤[66]、填海造岛[67]、船舶尾流[68]、海啸[69]、风生海流或潮汐[70]等扰动引发的底表细颗粒沉积物再悬浮[71-72]有关。

总体看, 近年来珊瑚礁区悬浮物变化主要有3方面特征。首先, 其主要特征是悬浮物含量递增。目前, 国内外已有较多学者通过野外现场调查[73]、卫星遥感技术[67, 74]、沉积物埋藏速率[75]、数值建模反演[20, 56]等方式报道了珊瑚礁区悬浮物含量递增的事实。如与欧洲人定居澳大利亚以前相比, 2012年Kroon等[20]报道指出大堡礁泻湖内悬浮物年平均负荷量增加了5.5倍, 达17000 t/a。而新加坡自20世纪70年代以来, 其近岸珊瑚礁区悬浮物沉降速率也从3.2-5.9 mg cm-2 d-1增至14-30 mg cm-2 d-1[76]。其次, 悬浮物组分改变。大量报道显示, 近年来珊瑚礁区悬浮物陆源组分显著增加, 尤其是微塑料[77-78]、杀虫剂[20]和多氯联苯[79]等有机污染物, 不仅在近岸珊瑚礁区丰度较高, 同时也广布于离岸珊瑚礁区。如Ding等[65]在我国西沙群岛3个环礁的外礁斜坡、礁滩和潟湖海水中皆检测到了微塑料, 其丰度分别为0.2-11.2个/L、1.0-12.2个/L、1.0-45.2个/L。而Tan等[80]最新研究也指出, 尽管南沙群岛远离大陆污染来源, 但微塑料依然广泛分布于其珊瑚礁区, 浓度为(55.6±35.5)个/L。再者, 悬浮物变频加剧。这主要与人类活动干扰[25, 66]和暴风雨、台风等极端天气[29, 61, 81]愈见频密引发的悬浮物变异频率、强度与持续时间加剧等有关。当前, 全球各地关于珊瑚礁区悬浮物变频加剧的报道较多, 且主要见于邻近人口密集地区的近岸珊瑚礁区。如Reichelt等[82]研究指出, 1991年5月20日和9月13日克利夫兰海湾(Cleveland Bay)的挖掘事件分别导致水体浊度在13-77NTU(NTU, nephelometric turbidity units)和32-215NTU之间波动, 显著高于对照海域的波动范围(1-25NTU)。而Thomas等[83]观测显示, 巴布亚新几内亚(Papua New Guinea)利希尔岛(Lihir Island)珊瑚礁区悬浮物含量较低(< 5 mg/L), 但由于受挖泥活动影响, 珊瑚礁区悬浮物含量长期(数月)高于25 mg/L, 影响严重区域其悬浮物常高达500-1000 mg/L。上述可知, 珊瑚礁区悬浮物来源异常是驱动其变化的主因, 而含量递增、组分改变与变频加剧是其变化的主要特征。

2 悬浮物对造礁石珊瑚光合自养的影响

光合自养是绝大多数造礁石珊瑚主要营养方式, 可为其提供50%-95%的能量与营养物质[84]。水体中高含量悬浮物的存在, 显著地消减水下光合有效辐射(PAR), 进而影响造礁石珊瑚光合自养能力。例如, 澳大利亚昆士兰北部的伯德金(Burdekin)沿岸珊瑚礁区长期处于浑浊状态, 50%PAR的衰减会降低该区域造礁石珊瑚70%的净光合作用[85]。Tamir等[86]也进一步指出, 浅水造礁石珊瑚(< 40 m)光合作用所需的PAR不低于水面PAR的1.25%, 否则将会使其失去光合自养能力。目前, 已有较多学者通过野外现场观测或室内模拟研究, 明确了悬浮物消光效应与其浓度、粒度、颜色和有机组分占比等因素有关[31, 87]。例如, Fourney等[88]以来自埃弗格雷斯港(Port Everglades)和佛罗里达群岛(Florida Keys)珊瑚礁区表层沉积物开展不同含量(30、60、90、120mg/cm2)的消光效应模拟实验, 结果显示采集于埃弗格雷斯港的表层沉积物, 由于其细颗粒(< 63 μm)和有机物组分占比高, 相同含量水平其消光效应显著高于佛罗里达群岛珊瑚礁区,且随着沉积物含量的递增,消光效应越加显著。由此可见, 悬浮物消光效应对造礁石珊瑚光合自养产生明显的负面影响, 与其浓度与组分结构有关。

此外, 也有少数学者注意到, 悬浮物在水动力或微生物作用下释放的无机组分或有机组分生物矿化生成的氮、磷等营养物质[89-91], 也是影响造礁石珊瑚光合自养的重要因素[92]。目前, 有研究认为水体营养物质的过量增加并不利于造礁石珊瑚生长, 尤其是营养物质本底值较高的近岸珊瑚礁区[93-95]。其原因主要为氮、磷等营养物质的过量存在, 不仅可直接促进共生虫黄藻的增殖, 导致其光合作用产物被用于其自身生长和繁殖而减少对宿主的供给量[96]。更为重要的是这也促进了其他浮游植物或大型藻类的生长, 进而产生遮阴效应间接地影响共生虫黄藻光合作用效率[36, 97]。再者, 在溶解无机氮含量显著增加的情况下, 氮、磷比例失衡也将导致共生虫黄藻处于磷酸盐饥饿状态, 降低其温度与光照胁迫的耐受力[98]。例如, Ferrier-Pagès等[99]通过实验发现, 培养体系中高含量铵盐和磷酸盐存在会导致柱状珊瑚(Stylophora pistillata)生长速率在1周内至少降低10%, 而时翔等[100]也指出佳丽鹿角珊瑚(Acropora pulchra)和多孔鹿角珊瑚(A.millepora)最大可以忍受30 μmol/L的磷酸盐浓度, 且在30 μmol/L浓度的耐受范围内, 随着磷酸盐浓度的不断增高, 虫黄藻叶绿素荧光指数(Fv/Fm)和密度呈显著降低趋势。上述可知, 水体悬浮物的增加, 其消光效应与氮、磷等其他营养物质的释放影响造礁石珊瑚光合自养过程, 不利于其生长。

3 悬浮物浓度和组分结构改变对造礁石珊瑚异养营养的影响

异养营养是造礁石珊瑚重要的营养补充。虽然已有大量研究证实大多数造礁石珊瑚具有异养可塑性, 即在其光合自养受阻时通过异养营养供给能量与营养物质[15, 101-102]。但珊瑚礁区悬浮物浓度与组分结构的改变, 对造礁石珊瑚异养营养的影响则利弊兼有。一方面, 地面径流[87]、生活污水[103]、养殖废水[104]等输入常携带大量有机物, 这些有机组分的补充不仅增加了悬浮物浓度, 同时也显著地提高了其生物可利用性, 进而可被造礁石珊瑚大量摄食。Anthony等[54]通过富集14C标记的悬浮物添加实验证实, 网状菊花珊瑚(Goniastrea retiformis)和细柱滨珊瑚(Porites cylindrica)在高浓度悬浮物水体中可摄食悬浮物进行异养营养, 且还进一步指出相对于离岸或低浓度悬浮物海域, 近岸高浊度水体中鹿角杯形珊瑚(Pocillopora damicornis)和多孔鹿角珊瑚(A.millepora)摄食悬浮物能力高10-20倍[55]。此外, Grover等[105]在2006年和2008年通过实验分别证实柱状珊瑚(S.pistillata)可吸收利用尿素(Urea)和溶解游离氨基酸(DFAAs, dissolved free amino acids), 而有机组分占比高的悬浮物在细菌等微生物作用下可将其降解生成Urea和DFAAs等小分子溶解有机物[106-107]。因此, 颗粒有机物的增加在一定程度上也间接地有利于部分造礁石珊瑚异养营养。

而另一方面, 随着人们对造礁石珊瑚异养营养的关注, 越来越多的学者注意到近年来挖泥[66]、工程建设[108]等人类活动加剧导致的泥沙等无机组分及微塑料[109]等有机物污染物的大量注入, 显著地降低了悬浮物生物可利用性, 进而导致其无法被造礁石珊瑚摄食利用。例如, Cunning等[14]报道, 在2013-2015年迈阿密(Miami)港口建设期间, 高含量泥沙、重金属[33]等物质生成, 无法被其摄食利用, 是造成其0.5 km范围内的560000株造礁石珊瑚死亡重要原因之一。而Ding等[65]在我国西沙群岛的造礁石珊瑚体内中检测到微塑料为0.02-1.3个/g, 证明微塑料虽然能被造礁石珊瑚误食, 但却不能利用它。综上, 珊瑚礁区悬浮物的增加, 可能会提高悬浮物的生物可利用性, 从而促进造礁石珊瑚异养营养。但实际上, 珊瑚礁区悬浮物的增加大多为人类活动或径流输入引起, 主要以无机或有害组分为主, 且并非所有的造礁石珊瑚都具有异养可塑性。因此, 总体来说珊瑚礁区悬浮物增加对造礁石珊瑚异养营养的弊大于利, 这也是导致近岸珊瑚礁退化的重要原因之一[14, 87]

4 造礁石珊瑚营养方式对悬浮物的适应性

珊瑚礁区悬浮物的增加, 虽然以往的研究已明确指出不利于造礁石珊瑚生长, 且不少学者也通过野外研究提出了珊瑚礁或造礁石珊瑚对悬浮物的耐受阈值[110]。如Rogers[111]认为人类活动影响生成的悬浮物浓度不能超过10 mg/L, 否则将影响珊瑚礁的结构与功能, 而Li等[112]也研究指出, 悬浮物中细颗粒组分(0-63 μm)沉降速率5-6 mg cm-2 d-1是影响造礁石珊瑚群落结构的阈值浓度。尽管如此, 实际上目前大多室内研究已证实少数种类造礁石珊瑚能暴露在悬浮物浓度为10-1000 mg/L的环境中数小时到一年而不会死亡[51], 且近年来此类现象也同样在野外有发现, 如在巴西阿波罗荷斯(Abrolhos)[48]、婆罗洲(Borneo)米里(Miri)[47]、大堡礁帕鲁玛浅滩(Paluma Shoals)[39, 46]和新加坡南部[113]等珊瑚礁区, 其水体浑浊, 但以团块状和皮壳状生长型为优势类群的造礁石珊瑚群落却生长较好, 群落整体呈低多样性、高覆盖率特征。这表明少数种类造礁石珊瑚对悬浮物具有一定耐受性, 能在高含量悬浮物存在的弱光环境中较好生长[49-50]

关于此现象, 当前已有学者运用稳定同位素[12, 114]或放射性元素[54]示踪、生物标志物[6, 115]和分子生物学技术[116-118]等方法, 通过室内研究或野外调查证实与造礁石珊瑚营养方式对悬浮物的适应性有关。这主要表现在以下2方面:

① 光合可塑性。造礁石珊瑚种类繁多, 不同种类造礁石珊瑚其共生虫黄藻形态、生理代谢、基因组成及垂直分布[119]存在差异。因此, 每种造礁石珊瑚皆有特定的光生态宽度, 对PAR变化表现出不同的响应特征[120]。在高含量悬浮物存在的弱光环境中, 光合可塑性较强的造礁石珊瑚可通过调节共生虫黄藻系群[121]、绿色荧光蛋白[122]、非光化学猝灭[123、有效光量子产量[124]、虫黄藻密度及其体内光合色素含量[125]等方式以适应PAR的变化, 进而保持恒定的光合作用效率。例如, 柱状珊瑚(S.pistillata)是备受学者关注与研究的模式种之一, 大量研究证实其具有较强光合可塑性, 能快速地适应大幅度波动的PAR(95%-0.8%水面PAR)[125]。Cohen等[126]也通过深水区(30 m)和浅水区(3 m)的交互移植证实, 当共生虫黄藻暴露于其边界区外的深度时, 其适应机制会发生显著变化, 显示该种造礁石珊瑚具有较强光合可塑性。

② 异养可塑性。造礁石珊瑚是珊瑚与虫黄藻共生体, 尽管共生虫黄藻光合作用可为其提供主要的能量与营养物质, 但其本质上仍属于异养动物[127]。在高含量悬浮物存在的弱光环境中, 部分造礁石珊瑚可转光合自养为异养营养或加快异养摄食速率等方式以补充其生命活动所需的能量与营养物质[2, 128]。Titlyanov等[129]研究发现, 柱状珊瑚(S.pistillata)在低PAR并投喂饵料时, 可观察到其共生虫黄藻数量稳定增加, 且在不同PAR条件下, 饵料投喂有助于其保持一定的呼吸速率, 这表明在弱光调节下, 柱状珊瑚(S.pistillata)可通过异养营养维持其自身的能量代谢。而Anthony等[54]通过富集14C标记的悬浮物添加实验, 不仅证实了网状菊花珊瑚(G.retiformis)和细柱滨珊瑚(P.cylindrica)在高浓度悬浮物水体中能进行异养营养, 且还指出网状菊花珊瑚(G.retiformis)在悬浮物含量为16mg/L的水体中, 为了应对光合自养能力的降低, 通过加快其摄食速率2倍多来补偿了光合自养35%-47%的营养损失, 进而使其能更好地适应弱光环境。近年来全球各地报道的浑浊水体能显著降低热应力影响下的造礁石珊瑚白化面积[46-47], 即可能与造礁石珊瑚摄食悬浮物补偿其能量与营养物质有关。

综上, 悬浮物变化影响造礁石珊瑚生长与分布。虽然绝大多数造礁石珊瑚对悬浮物敏感、耐受浓度较低。但同时, 也注意到少数种类造礁石珊瑚, 如团块状和皮壳状生长型类群, 具有光合可塑性或异养可塑性, 能在浑浊水体中较好生长。

5 小结与展望

悬浮物作为珊瑚礁区水体重要组分, 由于近年来其来源异常, 表现出含量增加、组分改变与变频加剧的变化特征。悬浮物变化显著地影响了造礁石珊瑚营养方式, 进而对其生长与分布产生重要影响。虽然已有研究证实少数种类造礁石珊瑚具光合可塑性或异养可塑性, 可在高含量悬浮物存在的弱光环境中生长良好。但对于大多数造礁石珊瑚而言, 其营养方式适应性较差, 无法在悬浮物影响下较好地获取生命活动所需的能量与营养物质, 进而难以生存。悬浮物变化对造礁石珊瑚光合自养与异养营养的影响存在显著的种间差异, 这也被认为是导致近年来近岸造礁石珊瑚覆盖率急剧下降与群落结构显著改变的重要原因之一。

当前, 关于造礁石珊瑚营养方式对悬浮物的响应及其适应性, 虽已开展了较多室内模拟或原位观测研究, 但仍有一些问题尚不清晰, 需进一步开展相关研究。主要有:①造礁石珊瑚营养方式对悬浮物适应性的分子机制。造礁石珊瑚适应多变环境与其基因表达的可塑性有关[130], 而长期暴露于浑浊水体中的造礁石珊瑚, 其适应的内在分子机制如何却鲜有报道, 有待于进一步揭示;②光合自养与异养营养在悬浮物影响下的互作机制。部分造礁石珊瑚, 尤其是悬浮物耐受类群, 其营养方式对悬浮物的适应性存在互作效应, 而这内在互作机制却仍不明朗, 需进一步明确;③误食微塑料的影响效应。微塑料是当前备受关注的污染物, 广布于全球珊瑚礁区。虽然已有研究指出造礁石珊瑚摄食悬浮物的同时, 常误食水体中的微塑料[131], 但微塑料对造礁石珊瑚生理代谢的影响效应如何?是否会在其体内长期累积, 进而阻碍其营养物质的获取等并不明晰, 有待进一步开展相关研究。

致谢: 感谢中国科学院南海海洋研究所雷新明、黄林韬给予的帮助。
参考文献
[1]
Iluz D, Dubinsky Z. Coral photobiology: new light on old views. Zoology, 2015, 118(2): 71-78. DOI:10.1016/j.zool.2014.08.003
[2]
Houlbrèque F, Ferrier-Pages C. Heterotrophy in tropical scleractinian corals. Biological Reviews, 2009, 84(1): 1-17. DOI:10.1111/j.1469-185X.2008.00058.x
[3]
Grottoli A G, Rodrigues L J, Palardy J E. Heterotrophic plasticity and resilience in bleached corals. Nature, 2006, 440(7088): 1186-1189. DOI:10.1038/nature04565
[4]
Tanaka Y, Suzuki A, Sakai K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. The ISME Journal, 2018, 12(3): 860-868. DOI:10.1038/s41396-017-0019-3
[5]
Goldberg W M. Coral food, feeding, nutrition, and secretion: a review//Kloc M, Kubiak J Z, eds. Marine Organisms as Model Systems in Biology and Medicine. Cham: Springer, 2018: 377-421.
[6]
Imbs A B. Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russian Journal of Marine Biology, 2013, 39(3): 153-168. DOI:10.1134/S1063074013030061
[7]
Bruno J F, Selig E R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One, 2007, 2(8): e711. DOI:10.1371/journal.pone.0000711
[8]
赵美霞, 余克服, 张乔民, 施祺. 近50年来三亚鹿回头岸礁活珊瑚覆盖率的动态变化. 海洋与湖沼, 2010, 41(3): 440-447.
[9]
De'ath G, Fabricius K E, Sweatman H, Puotinen M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 17995-17999. DOI:10.1073/pnas.1208909109
[10]
Hongo C, Yamano H. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009). PLoS One, 2013, 8(4): e60952. DOI:10.1371/journal.pone.0060952
[11]
Mellin C, Thompson A, Jonker M J, Emslie M J. Cross-shelf variation in coral community response to disturbance on the great barrier reef. Diversity, 2019, 11(3): 38. DOI:10.3390/d11030038
[12]
Conti-Jerpe I E, Thompson P D, Wong C W M, Oliveira N L, Duprey N N, Moynihan M A, Baker D M. Trophic strategy and bleaching resistance in reef-building corals. Science Advances, 2020, 6(15): eaaz5443. DOI:10.1126/sciadv.aaz5443
[13]
Hall T E, Freedman A S, De Roos A M, Edmunds P J, Carpenter R C, Gross K. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecological Applications, 2021, 31(2): e02234.
[14]
Cunning R, Silverstein R N, Barnes B B, Baker A C. Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes. Marine Pollution Bulletin, 2019, 145: 185-199. DOI:10.1016/j.marpolbul.2019.05.027
[15]
Solomon S L, Grottoli A G, Warner M E, Levas S, Schoepf V, Muñoz-Garcia A. Lipid class composition of annually bleached Caribbean corals. Marine Biology, 2020, 167(1): 7. DOI:10.1007/s00227-019-3616-z
[16]
DeCarlo T M, Cohen A L, Wong G T F, Davis K A, Lohmann P, Soong K. Mass coral mortality under local amplification of 2℃ ocean warming. Scientific Reports, 2017, 7: 44586. DOI:10.1038/srep44586
[17]
McLachlan R H, Price J T, Solomon S L, Grottoli A G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs, 2020, 39(4): 885-902. DOI:10.1007/s00338-020-01931-9
[18]
Coronado I, Fine M, Bosellini F R, Stolarski J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nature Communications, 2019, 10(1): 2896. DOI:10.1038/s41467-019-10833-6
[19]
Brodie J E, Devlin M, Haynes D, Waterhouse J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry, 2010, 106(2): 281-302.
[20]
Kroon F J, Kuhnert P M, Henderson B L, Wilkinson S N, Kinsey-Henderson A, Abbott B, Brodie J E, Turner R D R. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Marine Pollution Bulletin, 2012, 65(4/9): 167-181.
[21]
Hall M R, Kocot K M, Baughman K W, Fernandez-Valverde S L, Gauthier M E A, Hatleberg W L, Krishnan A, McDougall C, Motti C A, Shoguchi E, Wang T F, Xiang X Y, Zhao M, Bose U, Shinzato C, Hisata K, Fujie M, Kanda M, Cummins S F, Satoh N, Degnan S M, Degnan B M. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature, 2017, 544(7649): 231-234. DOI:10.1038/nature22033
[22]
Jones R, Fisher R, Bessell-Browne P. Sediment deposition and coral smothering. PLoS One, 2019, 14(6): e0216248. DOI:10.1371/journal.pone.0216248
[23]
Fabricius K E, De'ath G, Humphrey C, Zagorskis I, Schaffelke B. Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2013, 116: 57-65. DOI:10.1016/j.ecss.2012.03.010
[24]
Yahel R, Yahel G, Genin A. Daily cycles of suspended sand at coral reefs: a biological control. Limnology and Oceanography, 2002, 47(4): 1071-1083. DOI:10.4319/lo.2002.47.4.1071
[25]
Jones R, Bessell-Browne P, Fisher R, Klonowski W, Slivkoff M. Assessing the impacts of sediments from dredging on corals. Marine Pollution Bulletin, 2016, 102(1): 9-29. DOI:10.1016/j.marpolbul.2015.10.049
[26]
Erftemeijer P L A, Riegl B, Hoeksema B W, Todd P A. Environmental impacts of dredging and other sediment disturbances on corals: a review. Marine Pollution Bulletin, 2012, 64(9): 1737-1765. DOI:10.1016/j.marpolbul.2012.05.008
[27]
Hughes T P, Barnes M L, Bellwood D R, Cinner J E, Cumming G S, Jackson J B C, Kleypas J, van de Leemput I A, Lough J M, Morrison T H, Palumbi S R, van Nes E H, Scheffer M. Coral reefs in the Anthropocene. Nature, 2017, 546(7656): 82-90. DOI:10.1038/nature22901
[28]
Storlazzi C D, Gingerich S B, van Dongeren A, Cheriton O M, Swarzenski P W, Quataert E, Voss C I, Field D W, Annamalai H, Piniak G A, McCall R. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Science Advances, 2018, 4(4): eaap9741. DOI:10.1126/sciadv.aap9741
[29]
Edmunds P J, Tsounis G, Boulon R, Bramanti L. Acute effects of back-to-back hurricanes on the underwater light regime of a coral reef. Marine Biology, 2019, 166(2): 20. DOI:10.1007/s00227-018-3459-z
[30]
Herbeck L S, Unger D, Krumme U, Liu S M, Jennerjahn T C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science, 2011, 93(4): 375-388. DOI:10.1016/j.ecss.2011.05.004
[31]
Bainbridge Z, Lewis S, Bartley R, Fabricius K, Collier C, Waterhouse J, Garzon-Garcia A, Robson B, Burton J, Wenger A, Brodie J. Fine sediment and particulate organic matter: a review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Marine Pollution Bulletin, 2018, 135: 1205-1220. DOI:10.1016/j.marpolbul.2018.08.002
[32]
Carreón-Palau L, Parrish C C, Pérez-España H. Urban sewage lipids in the suspended particulate matter of a coral reef under river influence in the South West Gulf of Mexico. Water Research, 2017, 123: 192-205. DOI:10.1016/j.watres.2017.06.061
[33]
Gillmore M L, Gissi F, Golding L A, Stauber J L, Reichelt-Brushett A J, Severati A, Humphrey C A, Jolley D F. Effects of dissolved nickel and nickel-contaminated suspended sediment on the scleractinian coral, Acropora muricata. Marine Pollution Bulletin, 2020, 152: 110886. DOI:10.1016/j.marpolbul.2020.110886
[34]
Sully S, van Woesik R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Global Change Biology, 2020, 26(3): 1367-1373. DOI:10.1111/gcb.14948
[35]
Jones R, Ricardo G F, Negri A P. Effects of sediments on the reproductive cycle of corals. Marine Pollution Bulletin, 2015, 100(1): 13-33. DOI:10.1016/j.marpolbul.2015.08.021
[36]
Tebbett S B, Bellwood D R. Algal turf sediments on coral reefs: what's known and what's next. Marine Pollution Bulletin, 2019, 149: 110542. DOI:10.1016/j.marpolbul.2019.110542
[37]
Kendall Jr J J, Powell E N, Connor S J, Bright T J, Zastrow C E. Effects of turbidity on calcification rate, protein concentration and the free amino acid pool of the coral Acropora cervicornis. Marine Biology, 1985, 87(1): 33-46. DOI:10.1007/BF00397003
[38]
Freitas L M, Oliveira M D D M, Leão Z M A N, Kikuchi R K P. Effects of turbidity and depth on the bioconstruction of the Abrolhos reefs. Coral Reefs, 2019, 38(2): 241-253. DOI:10.1007/s00338-019-01770-3
[39]
Morgan K M, Perry C T, Smithers S G, Johnson J A, Daniell J J. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Scientific Reports, 2016, 6: 29616. DOI:10.1038/srep29616
[40]
Linsley B K, Dunbar R B, Dassié E P, Tangri N, Wu H C, Brenner L D, Wellington G M. Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nature Communications, 2019, 10(1): 2056. DOI:10.1038/s41467-019-10054-x
[41]
王章义, 师彦飞, 宋莹莹, 罗颖, 殷安齐, 李洪武. 水质与珊瑚增长速率关系研究. 海洋湖沼通报, 2018(4): 82-90.
[42]
Jordán-Garza A G, González-Gándara C, Salas-Pérez J J, Morales-Barragan A M. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz. Continental Shelf Research, 2017, 138: 32-40. DOI:10.1016/j.csr.2017.03.002
[43]
Richardson L E, Graham N A J, Hoey A S. Coral species composition drives key ecosystem function on coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1921): 20192214. DOI:10.1098/rspb.2019.2214
[44]
Speare K E, Duran A, Miller M W, Burkepile D E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Marine Pollution Bulletin, 2019, 144: 189-195. DOI:10.1016/j.marpolbul.2019.04.066
[45]
Guest J R, Tun K, Low J, Vergés A, Marzinelli E M, Campbell A H, Bauman A G, Feary D A, Chou L M, Steinberg P D. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 2016, 6: 36260. DOI:10.1038/srep36260
[46]
Morgan K M, Perry C T, Johnson J A, Smithers S G. Nearshore turbid-zone corals exhibit high bleaching tolerance on the great barrier reef following the 2016 ocean warming event. Frontiers in Marine Science, 2017, 4: 224. DOI:10.3389/fmars.2017.00224
[47]
Brown C, Browne N, Mcilwain J L, Zinke J. Inshore, turbid coral reefs from northwest Borneo exhibiting low diversity, but high cover show evidence of resilience to various environmental stressors. PeerJ Preprints, 2018, 6: e27422v1.
[48]
Loiola M, Cruz I C S, Lisboa D S, Mariano-Neto E, Leão Z M A N, Oliveira M D M, Kikuchi R K P. Structure of marginal coral reef assemblages under different turbidity regime. Marine Environmental Research, 2019, 147: 138-148. DOI:10.1016/j.marenvres.2019.03.013
[49]
Jones R, Giofre N, Luter H M, Neoh T L, Fisher R, Duckworth A. Responses of corals to chronic turbidity. Scientific Reports, 2020, 10(1): 4762. DOI:10.1038/s41598-020-61712-w
[50]
Bahr K D, Rodgers K S, Jokiel P L, Prouty N G, Storlazzi C D. Pulse sediment event does not impact the metabolism of a mixed coral reef community. Ocean and Coastal Management, 2020, 184: 105007. DOI:10.1016/j.ocecoaman.2019.105007
[51]
Browne N K, Tay J, Todd P A. Recreating pulsed turbidity events to determine coral-sediment thresholds for active management. Journal of Experimental Marine Biology and Ecology, 2015, 466: 98-109. DOI:10.1016/j.jembe.2015.02.010
[52]
Fox M D, Elliott Smith E A, Smith J E, Newsome S D. Trophic plasticity in a common reef-building coral: Insights from δ13C analysis of essential amino acids. Functional Ecology, 2019, 33(11): 2203-2214. DOI:10.1111/1365-2435.13441
[53]
Radice V Z. Trophic ecology of shallow and deep reef-building corals[D]. Queensland: The University of Queensland, 2019.
[54]
Anthony K R N, Fabricius K E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 2000, 252(2): 221-253. DOI:10.1016/S0022-0981(00)00237-9
[55]
Anthony K R N. Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs, 2000, 19(1): 59-67. DOI:10.1007/s003380050227
[56]
Delevaux J M S, Jupiter S D, Stamoulis K A, Bremer L L, Wenger A S, Dacks R, Garrod P, Falinski K A, Ticktin T. Scenario planning with linked land-sea models inform where forest conservation actions will promote coral reef resilience. Scientific Reports, 2018, 8(1): 12465. DOI:10.1038/s41598-018-29951-0
[57]
Carlson R R, Foo S A, Asner G P. Land use impacts on coral reef health: a ridge-to-reef perspective. Frontiers in Marine Science, 2019, 6: 562. DOI:10.3389/fmars.2019.00562
[58]
Fabricius K E, Golbuu Y, Victor S. Selective mortality in coastal reef organisms from an acute sedimentation event. Coral Reefs, 2007, 26(1): 69. DOI:10.1007/s00338-006-0171-0
[59]
Martins C C, Castellanos-Iglesias S, Cabral A C, de Souza A C, Ferraz M A, Alves T P. Hydrocarbon and sewage contamination near fringing reefs along the west coast of Havana, Cuba: a multiple sedimentary molecular marker approach. Marine Pollution Bulletin, 2018, 136: 38-49. DOI:10.1016/j.marpolbul.2018.08.031
[60]
Mejia-Echeverry D, Chaparro M A E, Duque-Trujillo J F, Restrepo J D. An environmental magnetism approach to assess impacts of land-derived sediment disturbances on coral reef ecosystems (Cartagena, Colombia). Marine Pollution Bulletin, 2018, 131: 441-452. DOI:10.1016/j.marpolbul.2018.04.030
[61]
Chen A F, Ho C H, Chen D L, Azorin-Molina C. Tropical cyclone rainfall in the Mekong River Basin for 1983-2016. Atmospheric Research, 2019, 226: 66-75. DOI:10.1016/j.atmosres.2019.04.012
[62]
Strauch A M, MacKenzie R A, Giardina C P, Bruland G L. Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds. Geomorphology, 2018, 306: 28-39. DOI:10.1016/j.geomorph.2017.12.030
[63]
J oy, A, Anoop, P. P, Rajesh, R, Mathew, J, Mathew, A, Gopinath, A. Spatial variation of trace element concentration and contamination assessment in the coral reef sediments of Lakshadweep Archipelago, Indian Ocean. Marine Pollution Bulletin, 2019, 146: 106-116. DOI:10.1016/j.marpolbul.2019.06.003
[64]
Duprey N N, Wang X T, Thompson P D, Pleadwell J E, Raymundo L J, Kim K, Sigman D M, Baker D M. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record. Marine Pollution Bulletin, 2017, 120(1/2): 109-116.
[65]
Ding J F, Jiang F H, Li J X, Wang Z X, Sun C J, Wang Z Y, Fu L, Ding N X, He C F. Microplastics in the coral reef systems from xisha islands of South China Sea. Environmental Science & Technology, 2019, 53(14): 8036-8046.
[66]
Mora C, Caldwell I R, Birkeland C, Mcmanus J W. Dredging in the spratly islands: gaining land but losing reefs. PLoS Biology, 2016, 14(3): e1002422. DOI:10.1371/journal.pbio.1002422
[67]
Barnes B B, Hu C M. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data. Scientific Reports, 2016, 6: 33194. DOI:10.1038/srep33194
[68]
Gelinas M, Bokuniewicz H, Rapaglia J, Lwiza K M M. Sediment resuspension by ship wakes in the venice lagoon. Journal of Coastal Research, 2013, 29(1): 8-17.
[69]
Kosciuch T J, Pilarczyk J E, Hong I, Fritz H M, Horton B P, Rarai A, Harrison M J, Jockley F R. Foraminifera reveal a shallow nearshore origin for overwash sediments deposited by Tropical Cyclone Pam in Vanuatu (South Pacific). Marine Geology, 2018, 396: 171-185. DOI:10.1016/j.margeo.2017.06.003
[70]
Pomeroy A W M, Lowe R J, Ghisalberti M, Storlazzi C D, Cuttler M, Symonds G. Mechanics of sediment suspension and transport within a fringing reef//Wang P, Rosati J C, Cheng J, eds. The Proceedings of the Coastal Sediments 2015. San Diego: World Scientific Publishing, 2015: 1-14.
[71]
Wang X H. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary with a muddy bed. Journal of Physical Oceanography, 2002, 32(11): 3113-3131. DOI:10.1175/1520-0485(2002)032<3113:TISRAT>2.0.CO;2
[72]
Ogston A S, Field M E. Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing coral reef: evidence from Molokai, Hawaii. Journal of Coastal Research, 2010, 26(6): 1027-1037.
[73]
Fabricius K E, Logan M, Weeks S J, Lewis S E, Brodie J. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013. Estuarine, Coastal and Shelf Science, 2016, 173: A1-A15. DOI:10.1016/j.ecss.2016.03.001
[74]
Restrepo J D, Park E, Aquino S, Latrubesse E M. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia. Science of the Total Environment, 2016, 553: 316-329. DOI:10.1016/j.scitotenv.2016.02.140
[75]
McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 2003, 421(6924): 727-730. DOI:10.1038/nature01361
[76]
Todd P A, Sidle R C, Lewin-Koh N J I. An aquarium experiment for identifying the physical factors inducing morphological change in two massive scleractinian corals. Journal of Experimental Marine Biology and Ecology, 2004, 299(1): 97-113. DOI:10.1016/j.jembe.2003.09.005
[77]
Martin C, Corona E, Mahadik G A, Duarte C M. Adhesion to coral surface as a potential sink for marine microplastics. Environmental Pollution, 2019, 255: 113281. DOI:10.1016/j.envpol.2019.113281
[78]
Wright S L, Thompson R C, Galloway T S. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 2013, 178: 483-492. DOI:10.1016/j.envpol.2013.02.031
[79]
Fey P, Bustamante P, Bosserelle P, Espiau B, Malau A, Mercader M, Wafo E, Letourneur Y. Does trophic level drive organic and metallic contamination in coral reef organisms?. Science of the Total Environment, 2019, 667: 208-221. DOI:10.1016/j.scitotenv.2019.02.311
[80]
Tan F, Yang H Q, Xu X R, Fang Z, Xu H L, Shi Q, Zhang X Y, Wang G, Lin L, Zhou S N, Huang L, Li H X. Microplastic pollution around remote uninhabited coral reefs of Nansha Islands, South China Sea. Science of the Total Environment, 2020, 725: 138383. DOI:10.1016/j.scitotenv.2020.138383
[81]
Butler I R, Sommer B, Zann M, Zhao J X, Pandolfi J M. The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. Marine Pollution Bulletin, 2015, 96(1/2): 356-367.
[82]
Reichelt A J, Jones G B. Trace metals as tracers of dredging activity in Cleveland Bay-field and laboratory studies. Australian Journal of Marine and Freshwater Research, 1994, 45(7): 1237-1257. DOI:10.1071/MF9941237
[83]
Thomas S, Ridd P V, Day G. Turbidity regimes over fringing coral reefs near a mining site at Lihir Island, Papua New Guinea. Marine Pollution Bulletin, 2003, 46(8): 1006-1014. DOI:10.1016/S0025-326X(03)00122-X
[84]
Baumann J, Grottoli A G, Hughes A D, Matsui Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. Journal of Experimental Marine Biology and Ecology, 2014, 461: 469-478. DOI:10.1016/j.jembe.2014.09.017
[85]
Strahl J, Rocker M M, Fabricius K E. Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. Marine Environmental Research, 2019, 147: 80-89. DOI:10.1016/j.marenvres.2019.04.003
[86]
Tamir R, Eyal G, Kramer N, Laverick J H, Loya Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere, 2019, 10(9): e02839.
[87]
Storlazzi C D, Norris B K, Rosenberger K J. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs, 2015, 34(3): 967-975. DOI:10.1007/s00338-015-1268-0
[88]
Fourney F, Figueiredo J. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits. Scientific Reports, 2017, 7(1): 12380. DOI:10.1038/s41598-017-12607-w
[89]
Mayer F W, Wild C. Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Marine and Freshwater Research, 2010, 61(9): 1006-1014. DOI:10.1071/MF09250
[90]
Bainbridge Z T, Wolanski E, Álvarez-Romero J G, Lewis S E, Brodie J E. Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia. Marine Pollution Bulletin, 2012, 65(4/9): 236-248.
[91]
McMahon K W, Thorrold S R, Houghton L A, Berumen M L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia, 2016, 180(3): 809-821. DOI:10.1007/s00442-015-3475-3
[92]
Skerratt J H, Mongin M, Baird M E, Wild-Allen K A, Robson B J, Schaffelke B, Davies C H, Richardson A J, Margvelashvili N, Soja-Wozniak M, Steven A D L. Simulated nutrient and plankton dynamics in the Great Barrier Reef (2011-2016). Journal of Marine Systems, 2019, 192: 51-74. DOI:10.1016/j.jmarsys.2018.12.006
[93]
雷新明, 黄晖, 王华接, 李秀保, 练健生. 造礁石珊瑚共生藻对富营养的响应研究. 海洋通报, 2009, 28(1): 43-49.
[94]
Cooper T F, Uthicke S, Humphrey C, Fabricius K E. Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2007, 74(3): 458-470. DOI:10.1016/j.ecss.2007.05.020
[95]
Riegl B, Velimirov B. How many damaged corals in Red Sea reef systems? A Quantitative Survey//Williams R B, Cornelius P F S, Hughes R G, Robson E A, eds. Coelenterate Biology: Recent Research on Cnidaria and Ctenophora. Dordrecht: Springer, 1991: 249-256.
[96]
Muscatine L, Falkowski P G, Dubinsky Z, Cook P A, McCloskey L R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proceedings of the Royal Society B: Biological Sciences, 1989, 236(1284): 311-324.
[97]
Ceccarelli D M, Evans R D, Logan M, Mantel P, Puotinen M, Petus C, Russ G R, Williamson D H. Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park. Ecological Applications, 2020, 30(1): e02008.
[98]
Wiedenmann J, D'angelo C, Smith E G, Hunt A N, Legiret F E, Postle A D, Achterberg E P. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 2012, 3(2): 160-164.
[99]
Ferrier-Pagès C, Gattuso J P, Dallot S, Jaubert J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs, 2000, 19(2): 103-113. DOI:10.1007/s003380000078
[100]
时翔, 谭烨辉, 黄良民, 黄小平, 李元超, 董志军. 磷酸盐胁迫对造礁石珊瑚共生虫黄藻光合作用的影响. 生态学报, 2008, 28(6): 2581-2586. DOI:10.3321/j.issn:1000-0933.2008.06.018
[101]
Levas S, Grottoli A G, Schoepf V, Aschaffenburg M, Baumann J, Bauer J E, Warner M E. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?. Coral Reefs, 2015, 35(2): 495-506.
[102]
Burmester E M, Breef-Pilz A, Lawrence N F, Kaufman L, Finnerty J R, Rotjan R D. The impact of autotrophic versus heterotrophic nutritional pathways on colony health and wound recovery in corals. Ecology and Evolution, 2018, 8(22): 10805-10816. DOI:10.1002/ece3.4531
[103]
Wear S L, Thurber R V. Sewage pollution: mitigation is key for coral reef stewardship. Annals of the New York Academy of Sciences, 2015, 1355(1): 15-30. DOI:10.1111/nyas.12785
[104]
Titlyanov E A, Titlyanova T V. Changes in the species composition of benthic macroalgal communities of the upper subtidal zone on a coral reef in Sanya Bay (Hainan Island, China) during 2009-2012. Russian Journal of Marine Biology, 2014, 39(6): 413-419.
[105]
Grover R, Maguer J F, Allemand D, Ferrier-Pagès C. Urea uptake by the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 2006, 332(2): 216-225. DOI:10.1016/j.jembe.2005.11.020
[106]
Guillemette R, Kaneko R, Blanton J, Tan J, Witt M, Hamilton S, Allen E E, Medina M, Hamasaki K, Koch B P, Azam F. Bacterioplankton drawdown of coral mass-spawned organic matter. The ISME Journal, 2018, 12(9): 2238-2251. DOI:10.1038/s41396-018-0197-7
[107]
Crandall J B, Teece M A. Urea is a dynamic pool of bioavailable nitrogen in coral reefs. Coral Reefs, 2012, 31(1): 207-214. DOI:10.1007/s00338-011-0836-1
[108]
Pollock F J, Lamb J B, Field S N, Heron S F, Schaffelke B, Shedrawi G, Bourne D G, Willis B L. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS One, 2014, 9(7): e102498. DOI:10.1371/journal.pone.0102498
[109]
Savinelli B, Vega Fernández T, Galasso N M, D'Anna G, Pipitone C, Prada F, Zenone A, Badalamenti F, Musco L. Microplastics impair the feeding performance of a Mediterranean habitat-forming coral. Marine Environmental Research, 2020, 155: 104887. DOI:10.1016/j.marenvres.2020.104887
[110]
Tuttle, L. J, Johnson, C, Kolinski, S, Minton, D, Donahue, M. J. How does sediment exposure affect corals?. Environmental Evidence, 2020, 9(1): 1-7. DOI:10.1186/s13750-020-0186-y
[111]
Rogers C S. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 1990, 62: 185-202. DOI:10.3354/meps062185
[112]
Li X B, Huang H, Lian J S, Liu S, Huang L M, Yang J H. Spatial and temporal variations in sediment accumulation and their impacts on coral communities in the Sanya Coral Reef Reserve, Hainan, China. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 96: 88-96. DOI:10.1016/j.dsr2.2013.04.015
[113]
Guest J R, Low J, Tun K, Wilson B, Ng C, Raingeard D, Ulstrup K E, Tanzil J T I, Todd P A, Toh T C, McDougald D, Chou L M, Steinberg P D. Coral community response to bleaching on a highly disturbed reef. Scientific Reports, 2016, 6: 20717. DOI:10.1038/srep20717
[114]
Ferrier-Pagès C, Leal M C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecology and Evolution, 2019, 9(1): 723-740. DOI:10.1002/ece3.4712
[115]
Parrish C C. Lipids in marine ecosystems. International Scholarly Research Notices, 2013, 2013: 604045.
[116]
Xu H L, Feng B X, Xie M R, Ren Y X, Xia J Q, Zhang Y, Wang A M, Li X B. Physiological characteristics and environment adaptability of reef-building corals at the Wuzhizhou island of South China Sea. Frontiers in Physiology, 2020, 11: 390. DOI:10.3389/fphys.2020.00390
[117]
Levy O, Karako-Lampert S, Waldman Ben-Asher H, Zoccola D, Pagès G, Ferrier-Pagès C. Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata. Proceedings. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1829): 20153025. DOI:10.1098/rspb.2015.3025
[118]
Leal M C, Nejstgaard J C, Calado R, Thompson M E, Frischer M E. Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians. Molecular Ecology, 2014, 23(15): 3838-3848. DOI:10.1111/mec.12496
[119]
Lichtenberg M, Larkum A W, Kühl M. Photosynthetic acclimation of Symbiodinium in hospite depends on vertical position in the tissue of the scleractinian coral Montastrea curta. Frontiers in Microbiology, 2016, 7: 230.
[120]
Hoogenboom M O, Connolly S R, Anthony K R N. Effects of photoacclimation on the light niche of corals: a process-based approach. Marine Biology, 2009, 156(12): 2493-2503. DOI:10.1007/s00227-009-1274-2
[121]
Wall C B, Kaluhiokalani M, Popp B N, Donahue M J, Gates R D. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. The ISME Journal, 2020, 14(4): 945-958. DOI:10.1038/s41396-019-0570-1
[122]
Roth M S, Latz M I, Goericke R, Deheyn D D. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. Journal of Experimental Biology, 2010, 213(21): 3644-3655. DOI:10.1242/jeb.040881
[123]
Hennige S J, Smith D J, Perkins R, Consalvey M, Paterson D M, Suggett D J. Photoacclimation, growth and distribution of massive coral species in clear and turbid waters. Marine Ecology Progress Series, 2008, 369: 77-88. DOI:10.3354/meps07612
[124]
黄玲英, 余克服, 施祺, 赵美霞, 陈天然, 严宏强. 三亚造礁石珊瑚虫黄藻光合作用效率的日变化规律. 热带海洋学报, 2011, 30(2): 46-50. DOI:10.3969/j.issn.1009-5470.2011.02.007
[125]
Titlyanov E A, Titlyanova T V, Yamazato K. Acclimation of symbiotic reef-building corals to extremely low light. Symbiosis, 2002, 33(2): 125-143.
[126]
Cohen I, Dubinsky Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification. Frontiers in Marine Science, 2015, 2: 45.
[127]
Baird A H, Bhagooli R, Ralph P J, Takahashi S. Coral bleaching: the role of the host. Trends in Ecology & Evolution, 2009, 24(1): 16-20.
[128]
杨阳楚翘, 洪文霆, 王淑红. 共生珊瑚异养营养研究进展. 应用生态学报, 2017, 28(12): 4143-4149.
[129]
Titlyanov E, Bil' K, Fomina I, Titlyanova T, Leletkin V, Eden N, Malkin A, Dubinsky Z. Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Marine Biology, 2000, 137(3): 463-472. DOI:10.1007/s002270000370
[130]
Tisthammer K H, Forsman Z H, Toonen R J, Richmond R H. Genetic structure is stronger across human-impacted habitats than among islands in the coral Porites lobata. PeerJ, 2020, 8: e8550. DOI:10.7717/peerj.8550
[131]
Axworthy J B, Padilla-Gamiño J L. Microplastics ingestion and heterotrophy in thermally stressed corals. Scientific Reports, 2019, 9(1): 18193. DOI:10.1038/s41598-019-54698-7