文章信息
- 李云飞, 都军, 张雪, 谢婷, 李小军
- LI Yunfei, DU Jun, ZHANG Xue, XIE Ting, LI Xiaojun
- 腾格里沙漠东南缘不同类型生物土壤结皮对土壤有机碳矿化的影响
- Carbon mineralization of soil covered by different types of biological crusts in the southeastern fringe of the Tengger Desert
- 生态学报. 2020, 40(5): 1580-1589
- Acta Ecologica Sinica. 2020, 40(5): 1580-1589
- http://dx.doi.org/10.5846/stxb201902220317
-
文章历史
- 收稿日期: 2019-02-22
- 网络出版日期: 2019-12-17
2. 中国科学院大学, 北京 101408;
3. 甘肃农业大学林学院, 兰州 730070
2. University of Chinese Academy of Sciences, Beijing 101408, China;
3. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
生物土壤结皮(Biological Soil Crusts, BSCs)占干旱区地表活体覆盖的40%以上[1], 是荒漠生态系统的重要组成部分, 也是干旱区碳收支的关键影响因素[2-3]。BSCs的发育和演替从以藻类为主到以地衣为主、最后演替到以藓类为主的过程中, 有机碳含量增加了3—22倍[4-6], 而其呼吸作用释放的碳占土壤呼吸碳释放总量的比例从18%增大到60%[3, 7-8]。尽管目前BSCs对碳循环的影响研究受到了广泛关注, 但都集中在其对土壤碳截存、土壤呼吸以及生物活性碳等方面的影响[3-8]。Muñoz-Rojas等[4]的研究发现, 蓝藻结皮覆盖土壤三个月之后土壤有机碳含量从0.6 g/kg增加到了1.9 g/kg;Zhao等[3]研究发现, 从流沙到藻类、地衣和苔藓结皮覆盖的土壤, 土壤呼吸碳释放量从56.6 g cm-2 a-1增加到128.8 g cm-2 a-1。这表明BSCs的演替过程显著改变了土壤碳收支过程, 然而, 目前关于BSCs对有机碳矿化的研究较为缺乏, 特别是BSCs发育和演替对碳矿化影响的研究尚未见报道, 这使得对BSCs的生态功能及其对生态系统碳循环过程的贡献认识不足。
土壤有机碳矿化是全球碳循环的重要组成部分, 也是陆地生态系统到大气碳通量的最大组成部分[9]。它不仅为植物生长提供了矿物质营养, 也为微生物降解有机质提供了能量[10]。土壤有机碳矿化过程受水分、温度、外源有机质、土壤质地、土地利用方式、土壤pH和土壤微生物数量及活性等环境因子的影响[10-15]。它对水分和温度的敏感性是反映全球变化影响陆地生态系统的重要指标[16], 通常, 土壤有机碳矿化速率随水分和温度的增加而增大, 且水分和温度对其影响具有同时性[12]。已有研究表明, 生物土壤结皮的拓殖和定居对土壤理化性质、水文特征和微生物特性等存在显著影响[2, 17-19]。特别是伴随着生物土壤结皮的演替过程, 结皮层碳氮含量等理化性质及微生物群落组成及其对表层土壤生态水文过程的影响发生了明显的变化, Dümig等[20]发现由藻类结皮演替到藓类结皮, 结皮层有机碳含量增加了1.8倍;Liu等[21]的研究发现随着生物土壤结皮的演替, 土壤微生物丰度和多样性呈逐渐增加趋势。生物土壤结皮自身的演变及其对表层土壤调控作用改变了环境因子, 因而可能影响SOC矿化过程, 并对生态系统碳循环和碳平衡产生影响。
腾格里沙漠东南缘属于荒漠化草原和草原化荒漠的过渡带, 地表广泛分布着藻类、地衣和藓类等隐花植物形成的BSCs, 它们在沙区生态系统生态水文过程中发挥着重要作用[22]。本研究拟通过对研究该区天然植被区不同类型BSCs及去除结皮土壤碳矿化速率及碳释放量及其与土壤理化性质及水热因子的关系, 揭示BSCs及其演替对土壤碳矿化的影响, 探讨生物土壤结皮发育对土壤碳矿化过程的关键影响因素, 为进一步认识BSCs的生态功能、了解BSCs在生态系统碳循环过程中的贡献提供科学依据。
1 材料与方法 1.1 研究区概况研究区位于腾格里沙漠东南缘、中科院沙坡头沙漠试验研究站以西22 km的红卫天然植被区(37°32′—37°26′ N, 105°02′—104°30′ E), 海拔约1300 m。该区为荒漠化草原和草原化荒漠的过渡带, 也是沙漠和绿洲的过渡带, 地势自西北向东南呈阶梯状倾斜。据多年气象数据显示, 该区年均温为10℃, 月均最高温25℃, 月均最低温-6.3℃;多年平均降水量为186.2 mm, 其中80%左右集中在7—9月, 多以小降水事件为主, 小于10 mm的降水在次数和总量上分别占85%和49%;最大蒸发量为2300—2500 mm, 约是降水总量的20倍。年均风速2.9 m/s, 风向以西北风为主。植被以深根系灌木和半灌木以及草本植物为主, 主要有油蒿(Artemisia ordosica)、驼绒藜(Ceratoides latens)、柠条锦鸡儿(Caragana korshinskii)、狭叶锦鸡儿(C. stenophylla)、刺叶柄棘豆(Oxytropis aciphylla)、茵陈蒿(A. capillaries)、小画眉草(Eragrostis minor)、雾冰藜(Bassia dasyphylla)、无芒隐子草(Cleistogenes songorica)、冠芒草(Enneapogon borealis)和小车前(Plantago minuta)等。土壤属于风沙土, 伴随着表层土壤理化性质及水热因子等的改善, 以隐花植物为主的生物土壤结皮开始拓殖、定居, 并逐渐由藻类为主向以地衣和藓类为主的生物土壤结皮演变, 形成不同类型结皮镶嵌分布的格局。该区生物土壤结皮总盖度达83%, 其中以藻类、地衣和藓类植物为优势种的结皮盖度分别为33%、9%和31%, 藻类、地衣和藓类混生结皮盖度约占10%。
1.2 研究方法在红卫天然植被区选择3个10 m×10 m的大样方用以调查植被特征, 样方间隔为20 m。3个样方中的植被优势种均相同, 主要包括油蒿、小画眉草、雾冰藜、柠条锦鸡儿、驼绒藜、狭叶锦鸡儿、刺叶柄棘豆、茵陈蒿、无芒隐子草和冠芒草, 灌木和半灌木植物盖度为13%, 草本植物盖度为17%。在每个大样方中分别布设以藻类、地衣和藓类为优势种的面积为1 m×1 m的小样方各3个, 每个小样方中优势种结皮盖度均大于90%, 藻类主要有具鞘微鞘藻(Microcoleus vaginatus)、隐头舟形藻(Navicula cryptovaginatus)、爪哇伪枝藻(Scytonema javanicum)、隐鞘鞘丝藻(Lyngbya cryptovaginatus)等, 地衣主要有石果衣(Endocarpon pusillum)、糙聚盘衣(Glypholecia scabra)等, 藓类主要有真藓(Bryum argenteum)、刺叶赤藓(Syntrichia caninervis)、土生对齿藓(Didymodon vinealis)等。然后在每个小样方中采用五点取样法采集0—5 cm结皮覆盖土壤两份, 其中一份去除结皮层作为对照, 同一个大样方中同一类型结皮的小样方中的土样混合成一个样品带回实验室, 每个混合土样重500 g, 共18个混合样。土壤过2 mm筛去除植物根系和残留凋落物, 4℃保存。土壤有机碳矿化采用短期室内暗培养测定[13]。实验设置10℃、25℃和35℃ 3个温度梯度, 以及土壤质量含水量10%和25%两个水分梯度, 每个处理3个重复。将盛有10 mL 0.2 mol/L NaOH溶液的小烧杯置于250 mL装有20 g(干重)供试土样的可密封广口瓶中, 用以吸收土壤有机碳矿化所释放的CO2, 分别在培养的第1、3、7、14、21天和28天用0.2 mol/L的HCl溶液进行滴定, 然后计算CO2-C的释放量和释放速率, 释放速率以释放量与培养时间之商算得, 分别以gC/kg干土和gC kg-1 d-1表示碳释放量和释放速率。
土壤有机碳矿化对温度的敏感性用Q10表示[13], 计算公式如下:
![]() |
式中, T1和T2分别是低温度和高温度, R1和R2分别是低温和高温条件下土壤CO2-C释放速率。
1.3 数据处理采用重复测量方差分析法分析结皮类型、温度和水分对BSCs覆盖土壤和去除BSCs土壤有机碳矿化过程中CO2释放速率和累积释放量的影响, 采用多因素方差分析法分析结皮类型、温度和水分对最大矿化速率和Q10的影响, 利用最小显著差异法(LSD法)进行显著性检验(α=0.05)。土壤有机碳平均矿化速率与土壤理化性质和生物土壤结皮类型之间相关性的冗余分析用Canoco 5.0软件实现。采用SPSS 17.0(SPSS Inc., Illinois, USA)进行数据统计分析。用Origin 9.0(Origin Lab Corp., USA)作图。
2 结果与分析 2.1 土壤有机碳矿化速率特征不同类型BSCs覆盖土壤和去除BSCs土壤有机碳矿化过程中CO2-C的释放速率均存在显著差异(图 1, P < 0.05), 升高温度和增加水分均能显著增大CO2-C最大释放速率(图 2, P < 0.05)。BSCs覆盖土壤水分含量10%条件下, 温度从10℃升高到35℃时, 藻类、地衣和藓类结皮土壤的最大矿化速率分别从0.071 gC kg-1 d-1、0.11 gC kg-1 d-1和0.19 gC kg-1 d-1增加到0.15 gC kg-1 d-1、0.36 gC kg-1 d-1和0.50 gC kg-1 d-1, 分别增加了2.1倍、3.2倍和2.7倍。相同温度和水分条件下, CO2-C的释放速率和最大释放速率均表现为藓类结皮>地衣结皮>藻类结皮土壤。随着培养时间的延长, 矿化速率呈逐渐下降趋势, 在培养的前七天下降速率最大, 后期逐渐趋于平缓。去除BSCs土壤有机碳矿化CO2-C释放速率特征与BSCs覆盖土壤类似。
![]() |
图 1 土壤有机碳矿化CO2-C释放速率 Fig. 1 Change in CO2-C production rate of different soil under different conditions |
![]() |
图 2 土壤有机碳矿化CO2-C最大释放速率 Fig. 2 Maximum CO2-C production rate of different soil under different conditions 不同大写字母表示不同温度间差异显著, P < 0.05;不同小写字母表示不同类型结皮间差异显著, P < 0.05 |
结皮类型、水分和温度对BSCs覆盖土壤和去除BSCs土壤有机碳矿化速率的影响均显著(表 2, P < 0.05);结皮类型与水分以及与温度的交互作用对BSCs覆盖土壤的影响显著(表 2, P < 0.05), 但对去除BSCs土壤CO2-C最大释放速率的影响不显著(表 2)。
因子 Factors |
BSCs覆盖土壤 Soil covered by BSCs |
去除BSCs土壤 Soil with BSCs being removed |
||||
平均速率 Production rateP |
最大速率 Maximum production rateP |
累积释放量 Cumulative productionP |
平均速率 Production rateP |
最大速率 Maximum production rateP |
累积释放量 Cumulative productionP |
|
结皮类型(BSCs)Biological soil crusts type | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
土壤水分(SWC)Soil water content | 0.001 | 0.035 | 0.001 | 0.000 | 0.000 | 0.000 |
温度(T) Temperature | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
结皮类型×土壤水分BSCs × SWC | 0.000 | 0.000 | 0.000 | 0.103 | 0.345 | 0.025 |
结皮类型×温度BSCs × T | 0.000 | 0.000 | 0.000 | 0.000 | 0.224 | 0.000 |
结皮类型×土壤水分×温度BSCs × SWC × T | 0.166 | 0.145 | 0.286 | 0.026 | 0.356 | 0.006 |
不同类型BSCs覆盖土壤和去除BSCs土壤有机碳矿化过程中CO2-C累积释放量均存在显著差异(图 3, P < 0.05)。BSCs覆盖土壤水分含量10%条件下, 温度从10℃升高到35℃时, 藻类、地衣和藓类结皮土壤累积碳释放量分别从1.27、1.67、2.72 gC/kg增加到1.90、4.28、6.63 gC/kg, 分别增加了1.5、2.6、2.4倍。相同温度和水分条件下, CO2-C释放量均表现为藓类结皮>地衣结皮>藻类结皮土壤。相同水分条件下, 温度的影响表现为35℃>25℃>10℃。去除BSCs土壤有机碳矿化CO2-C累积释放量变化规律与BSCs覆盖土壤相似。
![]() |
图 3 土壤有机碳矿化CO2-C累积释放量 Fig. 3 Change in cumulative CO2-C production of different soil under different conditions |
结皮类型、水分和温度对BSCs覆盖土壤和去除BSCs土壤有机碳矿化CO2-C累积释放量的影响均显著, 且结皮类型与水分以及与温度的交互作用的影响也显著(表 2, P < 0.05)。
2.3 土壤有机碳矿化对温度的敏感性方差分析结果表明, 水分对BSCs覆盖土壤Q10的影响不显著(图 4), 在土壤含水量25%时, 藻类、地衣和藓类结皮土壤的Q10分别为1.29、1.49和1.63, 藻类与藓类结皮土壤之间差异显著(图 4, P < 0.05)。水分和BSCs类型对去除BSCs土壤Q10的影响均不显著(图 4)。
![]() |
图 4 土壤有机碳矿化对温度的敏感性 Fig. 4 The temperature sensitivity of different soil under different conditions 不同大写字母表示不同土壤含水量间差异显著, P < 0.05;不同小写字母表示不同类型结皮间差异显著, P < 0.05 |
BSCs是干旱区碳收支的关键影响因素[3, 23], 其对有机碳矿化的作用在荒漠生态系统碳周转及土壤质量维持等方面发挥着重要作用[15]。本研究中, BSCs覆盖土壤有机碳平均矿化速率、最大矿化速率和累积碳释放量均显著大于去除结皮土壤, 不同类型BSCs覆盖土壤有机碳平均矿化速率、最大矿化速率和累积碳释放量均表现为藓类>地衣>藻类(图 1, 图 2, 图 3)。其他类似的研究中也发现了相似规律。Castillo-Monroy等[7]人在伊比利亚半岛的半干旱草地生态系统中的研究发现, BSCs呼吸碳释放量占该区土壤呼吸碳释放总量的43%, 植被和裸地的碳排放量分别占37%和20%。Zhao等[3]通过对腾格里沙漠东南缘固沙植被恢复区的研究表明, BSCs演替的后期, 藓类结皮年碳释放量分别是藻类结皮和地衣结皮的1.90倍和1.42倍。本研究通过对土壤有机碳矿化速率加权平均值的分析比较发现, 不同类型生物土壤结皮对土壤有机碳矿化的影响存在显著差异, 10℃条件下, 藻类和地衣之间无显著差异, 但藓类与藻类和地衣的差异显著;25℃和35℃条件下, 三种类型结皮之间均存在显著差异, 且随着温度升高结皮类型引起的差异更大(图 5), 表明不同类型BSCs土壤有机碳矿化特征的差异主要是由生物结皮类型的差异造成的。其次, BSCs发育和演替过程中, 土壤水热条件等逐渐改善[24], 浅根系草本植物和隐花植物大量繁殖, 他们的凋落物、分泌物以及残体等不断地在土壤表层积累和分解, 有效地促进了BSCs有机质的增加[17], 使得BSCs与其下层土壤有机碳含量存在一定差异。同时, 随着BSCs的发育和演替, 其盖度和粗糙度逐渐增大, 捕获和富集大气降尘的能力也逐渐增强, 使得BSCs中细颗粒物质和有机碳含量等逐渐增大[20](表 1)。此外, 其生物量和固碳能力也随演替序列有着明显的变化, 藓类结皮的生物量和固碳能力显著高于藻类结皮[3, 24], 处于各个演替阶段的不同类型BSCs土壤有机碳含量因而也形成了一定的差异(表 1), 这也是不同类型BSCs土壤有机碳矿化特征存在差异的另一个原因。
![]() |
图 5 土壤有机碳矿化速率加权平均值 Fig. 5 Weighted mean value of different soil organic carbon mineralization rate under different conditions 不同大写字母表示不同温度间差异显著, P < 0.05;不同小写字母表示不同类型结皮间差异显著, P < 0.05 |
理化性质 Physicochemical properties |
生物土壤结皮覆盖土壤 Soil covered by biological soil crusts (BSCs) |
去除BSCs土壤 Soil with BSCs being removed |
||||
藻类 Algae |
地衣 Lichens |
藓类 Mosses |
藻类 Algae |
地衣 Lichens |
藓类 Mosses |
|
容重(BD)Bulk density/(g/cm3) | 1.37±0.01a | 1.34±0.01a | 1.24±0.03b | 1.40±0.01a | 1.37±0.01a | 1.28±0.02e |
沙粒含量(S)Sand content/% | 86.33±0.14a | 84.12±0.28a | 73.01±1.28b | 90.28±0.36a | 88.34±0.23a | 77.51±1.65b |
粘粉粒含量(CS)Slay and silt content/% | 13.67±0.14a | 15.88±0.28a | 26.99±1.28b | 9.72±0.36e | 11.66±0.23a | 22.49±1.65e |
有机碳(SOC)Soil organic carbon/(g/kg) | 2.88±0.09a | 1.80±0.05b | 6.30±0.22e | 1.47±0.08a | 1.80±0.05e | 3.54±0.80b |
无机碳(SIC)Soil inorganic carbon/(g/kg) | 3.65±0.06a | 4.15±0.19a | 6.83±0.37e | 2.89±0.11e | 3.47±0.14a | 6.08±0.49e |
全氮(TN)Total nitrogen/(g/kg) | 0.47±0.03a | 0.55±0.00a | 0.79±0.06e | 0.29±0.03a | 0.34±0.01ab | 0.50±0.07b |
碱解氮(AN)Available nitrogen/(mg/kg) | 36.41±0.54a | 39.87±0.57b | 55.03±0.77c | 23.76±0.08e | 25.49±0.28a | 34.14±0.78e |
速效磷(AP)Available phosphorus/(mg/kg) | 3.32±0.07a | 3.82±0.07b | 5.82±0.11c | 2.96±0.06e | 3.46±0.08b | 5.12±0.08c |
速效钾(AK)Available potassium/(mg/kg) | 170.97±2.25e | 182.80±7.44a | 261.28±5.39b | 168.84±2.36e | 180.72±8.35a | 243.17±6.92b |
电导率(EC)Electronic conductivity/(μS/cm) | 105.47±0.28e | 114.45±1.95a | 162.87±7.69e | 86.69±1.60a | 93.63±2.02a | 124.35±7.52b |
pH | 8.86±0.01a | 8.83±0.04a | 8.77±0.04a | 9.02±0.01a | 8.99±0.04a | 8.98±0.04a |
水热因子是调节陆地生态系统碳矿化、氮矿化和土壤酶活性等生化过程的关键因素[25]。本研究发现, BSCs覆盖土壤和去除结皮土壤有机碳平均矿化速率、最大矿化速率和累积碳释放量均随温度升高和水分增大而增大(图 1, 图 2, 图 3)。Guo等[12]在中国东南部、Fernández等[26]在西班牙的研究也发现了类似的规律。温度和水分含量是影响土壤微生物生长和活性的最重要的环境因素[27-28], 而微生物是土壤有机质分解过程中产生CO2的主要群体[29]。较高的温度下, 微生物的数量和活性显著增加使得有机碳分解增加, 从而导致异养呼吸产生的CO2排放增加[30]。同时, 土壤酶是碳矿化速率的主要限制因子, 温度升高会加速土壤酶的催化过程以及微生物的代谢过程[31], 从而加速了土壤碳的矿化。水分主要是通过影响微生物与有机质的有效接触和微生物的活性[32], 进而间接影响土壤碳矿化过程。
相关性分析表明, 土壤碳矿化过程还与土壤理化性质密切相关(图 6), SOC、SIC、TN、AN、AP、AK、EC和粘粉粒含量(CS)均与土壤有机碳矿化过程成正相关关系(P < 0.05), 而沙粒含量(S)、BD和pH则与之成负相关关系(P < 0.05)。此外, 土壤碳矿化还受到温度敏感性、土壤质地、有机碳组分以及有机质数量和质量等的影响[27, 33-34]。土壤碳的有效性决定着有机质矿化的温度敏感性[35], 不稳定的碳首先被分解消耗, 而较为复杂和稳定的碳在分解过程的后期占主导地位[36], 因而碳矿化速率随培养时间呈现逐渐减小趋势。大部分活性有机碳都是以物理吸附的方式存在于大团聚体表面[37], 微生物对这部分有机碳的分解利用一般不受温度的影响, 但是大团聚体中微生物数量和丰度以及酶活性随温度升高为增加[38], 导致大团聚体中的Q10较高。相反, 微团聚体上的微生物数量和酶的吸附量随温度升高而减少[39], 导致有机质分解量随温度升高而减少, 因此, 与大团聚体相比Q10会降低。另外, 随着BSCs的发育和演替, 土壤微生物群落结构、数量以及质量等均发生显著变化[21], 这也是BSCs演替过程中不同类型结皮土壤碳矿化特征存在差异的主要原因。
![]() |
图 6 土壤有机碳平均矿化速率与土壤理化性质和生物土壤结皮类型之间的相关性 Fig. 6 Correlations between average soil organic carbon mineralization rate and soil physicochemical properties and type of biological soil crusts |
生物土壤结皮的发育和演替对土壤碳矿化过程存在显著的影响, 且与温度和水分呈正相关关系, 结皮的发育和演替促进了土壤矿化过程, 且其对碳循环过程的调控作用受水热因子的共同影响。藻类、地衣和藓类结皮中, 藓类结皮覆盖土壤的矿化速率和CO2-C累积释放量最大, 藻类结皮覆盖土壤最小。3种类型结皮土壤碳矿化对温度的敏感性(Q10)以藓类结皮土壤最高, 藻类结皮土壤最低。表明BSCs演替后期的藓类结皮对温度和水分等环境因子变化能更迅速的做出响应, 可以有效地指示气候变化过程中土壤碳循环过程及土壤质量的变化。
[1] |
Liu Y M, Yang H Y, Li X R, Xing Z S. Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China. Applied Soil Ecology, 2014, 80: 6-14. DOI:10.1016/j.apsoil.2014.03.015 |
[2] |
Lan S B, Wu L, Zhang D L, Hu C X. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environmental Earth Sciences, 2012, 65(1): 77-88. |
[3] |
Zhao Y, Zhang Z S, Hu Y G, Chen Y L. The seasonal and successional variations of carbon release from biological soil crust-covered soil. Journal of Arid Environments, 2016, 127: 148-153. DOI:10.1016/j.jaridenv.2015.11.012 |
[4] |
Muñoz-Rojas M, Román J R, Roncero-Ramos B, Erickson T E, Merritt D J, Aguila-Carricondo P, Cantón Y. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of the Total Environment, 2018, 636: 1149-1154. DOI:10.1016/j.scitotenv.2018.04.265 |
[5] |
Nisha R, Kaushik A, Kaushik C P. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma, 2007, 138(1/2): 49-56. |
[6] |
Pardo M T, Almendros G, Zancada M C, López-Fando C. Biofertilization of degraded southern African soils with cyanobacteria affects organic matter content and quality. Arid Land Research and Management, 2010, 24(4): 328-343. DOI:10.1080/15324982.2010.502918 |
[7] |
Castillo-Monroy A P, Maestre F T, Rey A, Soliveres S, García-Palacios P. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosystems, 2011, 14(5): 835-847. DOI:10.1007/s10021-011-9449-3 |
[8] |
Zhang Z S, Li X R, Nowak R S, Wu P, Gao Y H, Zhao Y, Huang L, Hu Y G, Jia R L. Effect of sand-stabilizing shrubs on soil respiration in a temperate desert. Plant and Soil, 2013, 367(1/2): 449-463. |
[9] |
Jia X X, Shao M A, Wei X R. Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agricultural and Forest Meteorology, 2012, 166-167: 32-40. DOI:10.1016/j.agrformet.2012.05.022 |
[10] |
Kumar M, Kundu D K, Ghorai A K, Mitra S, Singh S R. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil and Tillage Research, 2018, 178: 108-117. DOI:10.1016/j.still.2017.12.025 |
[11] |
Grave R A, Nicoloso R D S, Cassol P C, Aita C, Corrêa J C, Costa M D, Fritz D D. Short-term carbon dioxide emission under contrasting soil disturbance levels and organic amendments. Soil and Tillage Research, 2015, 146: 184-192. DOI:10.1016/j.still.2014.10.010 |
[12] |
Guo J F, Yang Y S, Chen G S, Xie J S, Yang Z J. Carbon mineralization of Chinese fir (Cunninghamia lanceolata) soils under different temperature and humidity conditions. Acta Ecologica Sinica, 2014, 34(1): 66-71. DOI:10.1016/j.chnaes.2013.11.008 |
[13] |
Yang C, Liu N, Zhang Y J. Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q10 values under wide temperature change conditions. European Journal of Soil Biology, 2017, 80: 77-84. DOI:10.1016/j.ejsobi.2017.04.002 |
[14] |
Yemadje P L, Guibert H, Chevallier T, Deleporte P, Bernoux M. Effect of biomass management regimes and wetting-drying cycles on soil carbon mineralization in a Sudano-Sahelian region. Journal of Arid Environments, 2016, 127: 1-6. DOI:10.1016/j.jaridenv.2015.10.017 |
[15] |
Abdelhafez A A, Abbas M H H, Attia T M S, El Bably W, Mahrous S E. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environmental Technology & Innovation, 2018, 9: 243-253. |
[16] |
Gaumont-Guay D, Black T A, Griffis T J, Barr A G, Jassal R S, Nesic Z. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 2006, 140(1/4): 220-235. |
[17] |
Kakeh J, Gorji M, Sohrabi M, Tavili A, Pourbabaee A A. Effects of biological soil crusts on some physicochemical characteristics of rangeland soils of Alagol, Turkmen Sahra, NE Iran. Soil and Tillage Research, 2018, 181: 152-159. DOI:10.1016/j.still.2018.04.007 |
[18] |
Chen N, Wang X P, Zhang Y F, Yu K L, Zhao C M. Ecohydrological effects of biological soil crust on the vegetation dynamics of restoration in a dryland ecosystem. Journal of Hydrology, 2018, 563: 1068-1077. DOI:10.1016/j.jhydrol.2018.06.076 |
[19] |
Wang F, Michalski G, Luo H, Caffee M. Role of biological soil crusts in affecting soil evolution and salt geochemistry in hyper-arid Atacama Desert, Chile. Geoderma, 2017, 307: 54-64. DOI:10.1016/j.geoderma.2017.07.035 |
[20] |
Dümig A, Veste M, Hagedorn F, Fischer T, Lange P, Spröte R, Kögel-Knabner I. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. Catena, 2014, 122: 196-208. DOI:10.1016/j.catena.2014.06.011 |
[21] |
Liu Y B, Zhao L N, Wang Z R, Liu L C, Zhang P, Sun J Y, Wang B Y, Song G, Li X R. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert. Soil Biology and Biochemistry, 2018, 126: 40-48. DOI:10.1016/j.soilbio.2018.08.012 |
[22] |
都军, 李宜轩, 杨晓霞, 李云飞, 马晓俊. 腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响. 中国沙漠, 2018, 38(1): 111-116. |
[23] |
Morillas L, Gallardo A. Biological soil crusts and wetting events:effects on soil N and C cycles. Applied Soil Ecology, 2015, 94: 1-6. DOI:10.1016/j.apsoil.2015.04.015 |
[24] |
Li X R, Zhang P, Su Y G, Jia R L. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study. Catena, 2012, 97: 119-126. DOI:10.1016/j.catena.2012.05.009 |
[25] |
Song Y Y, Song C C, Hou A X, Ren J S, Wang X W, Cui Q, Wang M Q. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland. Catena, 2018, 165: 381-389. DOI:10.1016/j.catena.2018.02.026 |
[26] |
Fernández J M, Plaza C, Hernández D, Polo A. Carbon mineralization in an arid soil amended with thermally-dried and composted sewage sludges. Geoderma, 2007, 137(3/4): 497-503. |
[27] |
Kelliher F M, Ross D J, Law B E, Baldocchi D D, Rodda N J. Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. Forest Ecology and Management, 2004, 191(1/3): 201-213. |
[28] |
Kirschbaum M U F. The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biology and Biochemistry, 2006, 38(9): 2510-2518. DOI:10.1016/j.soilbio.2006.01.030 |
[29] |
Plaza C, García-Gil J C, Polo A. Microbial activity in pig slurry-amended soils under aerobic incubation. Biodegradation, 2007, 18(2): 159-165. DOI:10.1007/s10532-006-9051-0 |
[30] |
Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition:a meta-analysis. Ecology, 2005, 86(12): 3252-3257. DOI:10.1890/05-0150 |
[31] |
Manzoni S, Taylor P, Richter A, Porporato A, Ågren G I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 2012, 196(1): 79-91. DOI:10.1111/j.1469-8137.2012.04225.x |
[32] |
Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different textures:interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil, 2000, 227(1/2): 215-221. DOI:10.1023/A:1026502414977 |
[33] |
Reichstein M, Bednorz F, Broll G, Kätterer T. Temperature dependence of carbon mineralisation:conclusions from a long-term incubation of subalpine soil samples. Soil Biology and Biochemistry, 2000, 32(7): 947-958. DOI:10.1016/S0038-0717(00)00002-X |
[34] |
Sheng H, Yang Y S, Yang Z J, Chen G S, Xie J S, Guo J F, Zou S Q. The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 2010, 16(3): 1107-1121. DOI:10.1111/j.1365-2486.2009.01988.x |
[35] |
Schütt M, Borken W, Spott O, Stange C F, Matzner E. Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biology and Biochemistry, 2014, 69: 320-327. DOI:10.1016/j.soilbio.2013.11.014 |
[36] |
Thiessen S, Gleixner G, Wutzler T, Reichstein M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-an incubation study. Soil Biology and Biochemistry, 2013, 57: 739-748. DOI:10.1016/j.soilbio.2012.10.029 |
[37] |
Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. DOI:10.1016/S0038-0717(00)00179-6 |
[38] |
Price P B, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4631-4636. DOI:10.1073/pnas.0400522101 |
[39] |
Kim R E, Hong S G, Ha S, Kim J. Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells. Enzyme and Microbial Technology, 2014, 66: 35-41. DOI:10.1016/j.enzmictec.2014.08.001 |