生态学报  2019, Vol. 39 Issue (10): 3426-3442

文章信息

金明霞, 王怡, 嵇保中, 刘曙雯, 徐立军, 张磊, 熊佳新, 喻爱林, 谢谷艾
JIN Mingxia, WANG Yi, JI Baozhong, LIU Shuwen, XU Lijun, ZHANG Lei, XIONG Jiaxin, YU Ailin, XIE Gu'ai
动物的共生菌固氮
Nitrogen fixation of symbiotic bacteria in animals
生态学报. 2019, 39(10): 3426-3442
Acta Ecologica Sinica. 2019, 39(10): 3426-3442
http://dx.doi.org/10.5846/stxb201803070456

文章历史

收稿日期: 2018-03-07
修订日期: 2018-10-11
动物的共生菌固氮
金明霞1,2 , 王怡1 , 嵇保中1 , 刘曙雯3 , 徐立军1 , 张磊1 , 熊佳新1 , 喻爱林2 , 谢谷艾2     
1. 南京林业大学南方现代林业协同创新中心; 南京林业大学林学院, 南京 210037;
2. 江西省林业科学院, 南昌 330013;
3. 南京中山陵园管理局, 南京 210014
摘要: 介绍了共生菌固氮涉及的动物和微生物类群、动物共生菌固氮的性质和机理。应用乙炔还原法和固氮酶基因检测等研究表明,所涉及的动物有7门13纲23目50科99属174种。动物肠道具有丰富的微生境,供不同生理需求的固氮菌生长发育,所蕴含的共生固氮菌类群也十分丰富,涵盖植物共生固氮菌、植物内生固氮菌、植物根际固氮菌、自生固氮菌等生态类型。一般认为动物共生固氮菌来源于环境,其性质属于联合共生固氮。动物共生固氮菌一般与其他共生生物形成复合体,以满足固氮过程中对电子和质子供体、能量供给、固氮酶活性保护以及氨阻遏解除等方面的需求。动物共生菌固氮产物氨的同化也需要多种共生物的协同作用,可能通过谷氨酰胺合成酶/谷氨酸合成酶等途径。总体上,食物氮、非蛋白氮和共生菌固氮相互协调,形成营养和解毒的代谢网络,共同维持动物体内氮素营养的动态平衡,并对未来研究提出展望。
关键词: 动物共生固氮菌    固氮菌生态类型    联合固氮    共生复合体    氨同化途径    
Nitrogen fixation of symbiotic bacteria in animals
JIN Mingxia1,2 , WANG Yi1 , JI Baozhong1 , LIU Shuwen3 , XU Lijun1 , ZHANG Lei1 , XIONG Jiaxin1 , YU Ailin2 , XIE Gu'ai2     
1. Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
2. Jiangxi Academy of Forestry, Nanchang 330013, China;
3. The Administration Bureau of Dr. Sun Yat-sen's Mausoleum, Nanjing 210014, China
Abstract: In this paper, we reviewed the symbiotic association between animals and nitrogen-fixing bacteria and the nature and mechanism of symbiosis. A total of 174 species of animals in 7 phyla, 13 classes, 23 orders, 50 families, and 99 genera were evaluated in this paper, and they were found to use acetylene reduction and gene detection of nitrogenase. The animal gut has a rich microbial environments, which meets the growth and development demands of nitrogen-fixing bacteria. As a result, the animal guts were rich with symbiotic nitrogen-fixing bacteria of different ecological types, such as those that are symbiotic with plants, those that are endophytic diazotrophs, nitrogen-fixing bacteria from the rhizospheres, and Azotobacter. It is generally believed that animal symbiosis with nitrogen-fixing bacteria stems from the environment. The nature of animal symbiosis with nitrogen-fixing bacteria belongs to associative nitrogen fixation. Nitrogen-fixing bacteria that are symbiotic with animals coordinate with other symbiotic organisms to meet the needs of electron and proton donors, energy supply, nitrogenase activity protection, and ammonia repression relief during nitrogen fixation. The assimilation of ammonia during nitrogen fixation is also involved in the synergies of different symbiotic organisms and might be carried out through the pathway of glutamine synthetase/glutamate synthetase.In general, food nitrogen, non-protein nitrogen, and nitrogen-fixing symbiotic bacteria coordinate with each other to form a metabolic network of nutrition and detoxification to maintain the homeostasis of nitrogen nutrition in animals. The prospects of nitrogen fixation of animal symbionts were also identified in this paper.
Key Words: symbiotic nitrogen-fixing bacteria    ecological types of symbiotic nitrogen-fixing bacteria    Associative nitrogen fixation    symbiotic complex    ammonia assimilation pathway    

1888年, Beijerinck首次分离出具有固氮活性的微生物, 1893年Glatz分离出厌氧型固氮梭菌, 这些工作开创了研究生物固氮和固氮微生物的科学领域[1]。1912年Peklo从蚜虫体内分离获得固氮菌[2], 此后不同作者陆续开展了白蚁[3-5]、蚜虫[6]、小蠹虫[2]、药材甲、谷盗、衣蛾、果蝇[7]等共生菌固氮能力的研究。由于缺乏高精度检测仪器, 这些早期研究并未提供动物共生菌固氮的有力证据。这种局面直到乙炔还原法的出现才得以改变, 乙炔还原法为生物固氮研究提供了简便准确的检测方法, 首先在白蚁共生菌固氮检测中获得成功[8-9]。此后, 针对不同昆虫的类似工作陆续展开[10-11]。不仅测定固氮酶活性, 还对消化道内的共生固氮菌进行分离鉴定[12-13]。动物共生固氮研究的另一重要进展是分子生物学技术的应用, 从而克服了许多固氮菌不能分离培养的局限。钼铁蛋白和铁蛋白固氮酶系统中铁蛋白由nifH基因编码, nifH基因高度保守, 对其检测可用于固氮菌类群鉴定和系统发育研究[14]。虽然国外对动物共生菌固氮的研究已逾百载, 但国内的相关研究尚处于起步阶段。黄小芳等[1]、王亚召等[14]曾分别撰文介绍海洋动物和白蚁共生菌固氮的研究情况。本文从动物共生菌固氮涉及的动物和微生物类群、动物共生菌固氮的性质和机理等角度, 介绍动物共生菌固氮的研究进展。

1 共生菌固氮涉及的动物类群

一般认为, 动物共生菌固氮现象主要存在于贫氮营养型动物, 如珊瑚、白蚁、船蛆、食木鲶鱼等。但已报道具有固氮酶活性或具有固氮酶基因的动物已远超上述范畴, 涉及的动物包括海绵、珊瑚、蚯蚓、磷虾、马陆、昆虫、蜗牛、船蛆、松鸡、奶牛、山羊、猪、河狸、沙鼠、豚鼠、人类等。据本文统计, 已报道共生菌固氮动物有7门13纲23目50科99属174种(见表 1)。

表 1 已报道的共生菌固氮动物 Table 1 The reported animals with symbiotic nitrogen fixation bacteria
种类/检测材料/文献来源
Species/Testing materials/Literature sources
种类/检测材料/文献来源
Species/Testing materials/Literature sources
种类/检测材料/文献来源
Species/Testing materials/Literature sources
多孔动物门Porifera、
寻常海绵纲Demospongiae
Coptotermes acinaciformis [13] Prionoplus reticularis/消化道匀浆[15]
网角海绵目Dictyoceratida ▲◆●C. formosanus/工蚁、兵蚁[9, 16] ▲●Conorhynchus pistor/幼虫[17]
Ircinia strobilina/活体组织[18] ▲◆C. gestroi/工蚁[19] Dendroctonus frontalis[20]
繁骨海绵目Poecilosclerida ▲●C. lacteus/工蚁[12-13] ◆●D. rhizophagus [21]
Mycale laxissima/活体组织[18] Heterotermes ferox[13] ▲●D. terebrans/成虫、幼虫[20]
刺胞动物门Cnidaria、珊瑚纲Anthozoa、石珊瑚目Scleractinia H. indicola[22] ▲◆●D. valens/成虫、幼虫[21]
Acropora millepora/珊瑚虫幼体和珊瑚活体组织[22, 24] H. sp. [24] Ips avulsus[20]
◆●A. muricata/组织活体[25] H. sp./工蚁、兵蚁[26] Tomicus piniperda/幼虫[11]
◆●A. robusta/组织活体[27] ▲◆★●Reticulitermes flavipes/工蚁、兵蚁、前兵蚁、若蚁、幼蚁、长翅生殖蚁[9, 22, 28] 双翅目Diptera
A. variabilis/组织活体[29] R. chinensis/工蚁[30] ▲●Bactrocera tryoni[31]
Galaxea astreata[32] ▲●R. lucifugus/工蚁、排泄物培养[33] ▲◆Ceratitis capitata/成虫、肠道分离细菌的培养物[34]
Montipora capitata/组织活体[35] R. santonensis/工蚁[11] 膜翅目Hymenoptera
M. flabellata/组织活体[35] ▲◆★R. speratus/工蚁[36] Sirex noctilio/幼虫[37]
Lophelia pertusa/组织活体[38] R. tibialis/未明确发育阶段个体[24] Acromyrmex echinatior/工蚁[39]
▲◆★Montastraea cavernosa /组织活体[40] R. sp./工蚁[24] ◆●A. octospinosus/工蚁[39]
Stylophora pistillata /珊瑚分泌的粘液[41] R. sp./工蚁[42] A. volcanus/工蚁[39]
Pavona decussata[32] R. sp./工蚁[43] Cephalotes varians/工蚁[44]
Porites sp./珊瑚分泌的粘液[41] R. sp./工蚁、兵蚁、前兵蚁、幼蚁、长翅生殖蚁[45] Dolichoderus gibbifer/工蚁[46]
P. lutea[32] R. sp./工蚁[47] Echinopla pallipes/工蚁[46]
Favia favus/组织活体[48] R. virginicus/工蚁、兵蚁、前兵蚁、若蚁、幼蚁、长翅生殖蚁[13, 42] Tetraponera allaborans/工蚁[46]
Pocillopora damicornis/组织活体[49] Amitermes sp./工蚁、兵蚁[26] Tetraponera cf. allaborans/工蚁[46]
Seriatopora hystrix/组织活体[50] A. sp./工蚁、兵蚁[24] T. attenuate/工蚁[46]
柳珊瑚目Gorgonacea A. wheeleri/未明确发育阶段个体[24] T. binghami/工蚁[51]
Cladopsammia gracilis/珊瑚分泌的粘液[41] Constrictotermes sp./工蚁[24] T. extenuata/工蚁[46]
线虫动物门Nematoda、色矛纲Chromadorea、链环目Desmodorida Cornitermes sp./工蚁、兵蚁[26] T. pilosa/工蚁[46]
Laxus oneistus/发育阶段不明的幼虫[52] Cubitermes sp./工蚁、生殖蚁[26] 软体动物门Mollusca、腹足纲Gastropoda、柄眼目Stylommatophora
环节动物门Annelida、寡毛纲Clitellata、后孔寡毛目Opisthopora ▲◆Globitermes sulphureus/工蚁[19] Helix aspersa/肠道分离细菌的培养液[53]
Allolobophora chlorotica[54] G. tubiformans/工蚁[55] 双壳纲Bivalvia、海螂目Myoida
Aporrectodea caliginosa[54] Labiotermes sp./工蚁[26] ◆●Bankia gouldi[56]
A. rosea[54] ▲◆Microcerotermes crassus/工蚁[19] Dicyanthifer manni[56]
Eisenia foetida/肠道分泌细菌的培养液[53-54] M. parvus/工蚁、兵蚁[57] ◆★Loripes lucinalis/未明确发育阶段[52]
Lumbricus castaneus[54] Macrotermes natalensis/大工蚁、小工蚁、大兵蚁、小兵蚁[58] ▲◆●Lyrodus pedicellatus/成虫、幼虫[56, 59]
L. rubellus[54] ▲●M. sp./工蚁[60] Psiloteredo healdi[61]
L. terrestris[54] M. sp./工蚁[19] P. megotara[62]
Octolasion lacteum[54] M. sp./工蚁[19] Teredo bartschi[61]
▲●Pheretima vittata/肠道分泌细菌的培养物[63] ▲★Nasutitermes corniger/整巢个体; 工蚁、兵蚁混合[64] T. furcifera[61]
节肢动物门Arthropoda ▲◆N. dimorphus/工蚁[19] ▲●Teredo navalis/成虫、幼虫[61-62]
软甲纲Malacostraca、磷虾目Euphausiacea N. ephratae/工蚁、兵蚁[65] ▲◆Teredora malleolus/成虫、幼虫[56, 62]
Euphausia sp./混合个体[66] N. exitiosus/工蚁[12] 脊索动物门Chordata、辐鳍鱼纲Actinopterygii、鲶目Siluriformes
甲壳纲Crustacea、桡足亚纲Copepoda Nasutitermes graveolus[13] Panaque nigrolineatus/肠道组织及内容物[67]
◆Copepods/混合个体[66] N. macrocephalus/工蚁、兵蚁混合[24] 鸟纲Aves、鸡形目Galliformes
哲水蚤目Calanoida N. matangensis/工蚁[19] Lyrurus tetrix/肠道内容物[68]
Eurytemora affinis/实验室和野外种群[69] N. nigriceps[70] Tetrao urogallus/肠道内容物[68]
倍足纲Diplopoda、球马陆目Glomerida N. takasagoensis/工蚁[71] 哺乳纲Mammalia、偶蹄目Artiodactyla
Glomeris cingulata/肠道分离细菌的培养液[53] N. sp./工蚁、兵蚁[24] ▲◆Bos tauru/瘤胃中分离的固氮菌培养物[72]
昆虫纲Insecta、蜚蠊目Blattaria N.sp.[73] Capra sp.[74]
▲◆●Cryptocercus punctulatus/成虫、若虫[10, 22, 75] Nasutitermes walkeri/工蚁[13, 24] ▲★羊/瘤胃液培养物[76]
等翅目Isoptera N. sp./工蚁[26] Ovis sp.[77]
▲◆●Mastotermes darwiniensis/工蚁[12-13, 22] N. sp./工蚁[24] O. sp./瘤胃液[78]
▲◆Hodotermopsis sjoestedti/工蚁[71] Odontotermes badius/工蚁、兵蚁[58] ▲●Susscrofa domestica/从肠道内容物分离的固氮菌[79]
▲◆●Zootermopsis angusticollis/工蚁、幼蚁[8] ◆●O. formosanus/工蚁[80] 啮齿目Rodentia
Z. nevadensis/工蚁[19] Odontotermes sp./工蚁[19] Castor fiber/肠道内容物[81]
Z. sp./生殖蚁、若蚁、工蚁[9] Pericapritermes nitobei/工蚁[71] ▲●Meriones meridianus/肠道内容物、肠道分离菌培养物[82]
Stolotermes ruficeps/幼蚁[83] Rhynchotermes perarmatus/工蚁、兵蚁[65] ▲●M. tamariscinus/肠道内容物、肠道分离菌培养物[82]
Cryptotermes brevis/工蚁、生殖蚁若虫[8-9] Termes sp./工蚁[24] ▲●Microtus rossiaemeridionalis/肠道内容物[84]
▲◆C. domesticus/工蚁[71] Trinervitermes trinervoides/工蚁、兵蚁、生殖蚁[26] M. subarvalis/盲肠内容物[85]
▲◆C. longicollis/工蚁[71] 鞘翅目Coleoptera ▲●Clethrionomys glareolus/肠道内容物[84]
C. primus [13] Euoniticellus intermedius/幼虫[86] Spalax microphtalmus/盲肠内容物[85]
▲◆G. fuscus/工蚁[71] E. triangulatus/幼虫[86] ▲●Cavia porcellus/从肠道内容物分离的固氮菌[79]
▲◆Incisitermes marginipennis/工蚁[71] Dorcus (Macrodorcus) rectus/幼虫[87] 兔形目Lagomorpha
I. minor/工蚁、兵蚁、生殖蚁若虫[8] ◆★Odontotaenius disjunctus/成虫[88] Ochotona dauurica/结肠和盲肠内容物[89]
▲◆Kalotermes flavicollis/工蚁[71] Cetonia aurata/成虫、幼虫[53] O. hyperborea /结肠和盲肠内容物[89]
▲◆●Neotermes castaneus/工蚁[90] Agriotes obscurus/幼虫[91] ◆●O. mantchurica/结肠和盲肠内容物[89]
▲◆★N. koshunensis/工蚁[71] Selatosomus aeneus/幼虫[91] 灵长目Primates
Hodotermes mossambicus/大工蚁、小工蚁[92] Anobium punctatum/幼虫[11] ▲◆★Homo sapiens/粪便[79, 93]
Schedorhinotermes intermedius[13] Tenebrio molitor/肠道分离细菌的培养液[53]
S. medioobscurus/工蚁[19] ▲◆★Anoplophora glabripennis/幼虫[28]
▲:乙炔还原法;◆:固氮酶基因检测;★:15N同位素检测;●:固氮菌分离鉴定

从海绵到人类, 涉及低等到高等多种动物类群。其中有贫氮营养型动物, 也有杂食性动物。表 1所列174种动物中, 多孔动物门2种(1.15%), 刺胞动物门17种(9.77%), 线虫动物门1种(0.58%), 环节动物门9种(5.17%), 节肢动物门113种(64.94%), 软体动物门11种(6.32%), 脊索动物门21种(12.07%)。节肢动物种类最多, 其次为脊索动物、刺胞动物、软体动物和环节动物, 多孔动物和线虫动物仅有少量研究。节肢动物113种中昆虫纲109种, 占96.5%。昆虫纲中等翅目75种, 占昆虫纲种类的68.8%;鞘翅目18种, 占16.5%;膜翅目13种, 占11.9%。脊索动物21种中, 辐鳍鱼纲1种, 鸟纲2种, 哺乳纲18种。刺胞动物17种全部为珊瑚纲种类, 其中石珊瑚目16种, 柳珊瑚目1种。

2 动物共生固氮菌的类群特点 2.1 常见种类

表 2所列52种动物所涉及固氮菌87属137种, 大多数种类属于细菌, 也有少数古菌, 如Methanobacterium ivanovii[94]和鲁米叶甲烷马赛里球菌[93]。水生动物中还发现有藻类[24, 49]。按出现频次, 表 2所列固氮菌中常见种类有慢生根瘤菌Bradyrhizobium sp.(8次)、肠杆菌Enterobacter sp.(7次)、肺炎克雷伯氏菌(6次)、葡萄球菌Staphylococcus sp.(5次)、肠杆菌Enterobacteriaceae sp.(5次)、链球菌Streptococcus sp.(4次)、法氏柠檬酸杆菌(4次)。出现3次的有11种, 分别为圆褐固氮菌、拟杆菌Bacteroides sp.、芽孢杆菌Bacillus sp.、巴氏固氮梭菌、催娩克雷白氏菌、Klebsiella sp.、甲基孢囊菌Methylocystis sp.、根瘤菌Rhizobium sp.、红球菌Rhodococcus sp.、中华根瘤菌Sinorhizobium sp.、密螺旋体Treponema sp.。出现2次的有23种。出现1次的96种, 约占全部种类的70%。多数种类仅出现1次, 表明研究的动物种类仍然较少, 发现的固氮菌种类较为分散, 实际蕴含的种类资源可能更为丰富(表 2中固氮菌生态类型划分为:A:植物共生固氮菌;B:植物内生固氮菌;C:植物根际固氮菌;D:自生固氮菌;AB:植物共生/植物内生固氮菌;AD:植物共生/自生固氮菌;BC:植物内生/植物根际固氮菌;BD:植物内生/自生固氮菌)[102-116]

表 2 动物共生固氮菌种类与生态类型 Table 2 The Species and ecological types of animal symbiotic nitrogen xation bacteria
宿主/固氮菌种类/文献来源
Host/Types of symbiotic nitrogen-fixing bacteria/Literature sources
宿主/固氮菌种类/文献来源
Host/Types of symbiotic nitrogen-fixing bacteria/Literature sources
多孔动物门Porifera、寻常海绵纲Demospongiae Nasutitermes graveolus/Enterobacter sp., Staphylococcus sp.[13]
Ircinia strobilina, Mycale laxissima/DAzotobacter chroococum, DDesulfovibrio salexigens, Leptolyngbya sp., Methylocystis sp., Myxosarcina sp., Tolypothrix sp., Trichodesmium thiebautii[18] Nasutitermes nigriceps/Ensifer sp.[70]
刺胞动物门Cnidaria、珊瑚纲Anthozoa Neotermes castaneus/Arthrobacter sp., Bacteroides. Enterobacteriaceae, Myxobacterales, CStaphylococcus sp.[90]
Acropora millepora/Alphaproteobacteria sp., Bradyrhizobium sp., Cyanobacteria sp., Deltaproteobacteria sp., Desulfuromonas sp., Gammaproteobacteria sp., Myxosarcina sp., Sinorhizobium sp., Xenococcus sp.[23] Macrotermes sp./Azotobacter sp., Beijerinckia sp., DClostridium pasteurianumm, Klebsiella sp.[60]
A. robusta/Bradyrhizobium sp., Paenibacillus durus, Rhizobium sp., Sinorhizobium sp.[27] Odontotermes formosanus/BDKlebsiella pneumoniae[95]; BKlebsiella variicola[80]
Pocillopora damicornis, Acropora millepora, A. muricata/Bradyrhizobium sp., Cylindrospermopsis raciborskii, DDesulfovibrio salexigens, Dickeya dadantii, Methylobacter luteus, Methylocystis echinoides, Nodularia spumigena, Trichodesmium erythraeum, Wolinella succinogenes[25] Odontotaenius disjunctus/Paludibacter propionicigenes[88]
Montipora capitata, M. flabellata/BAcetobacter diazotrophicus, DAzomonas agilis, BDA. macrocytogenes, BCAzospirillum lipoferum, DAzotobacter chroococcum, DA. vineladii, Bradyrhizobium sp., Desulfobacter latus, Halorhodospira halophila, Marichromatium purpuratum, AMesorhizobium loti[35] Conorhynchus pistor/BDKlebsiella pneumonia[17]
Porites lutea/Acetobacterium woodii, ABradyrhizobium japonicum, ABBurkholderia cepacia, Chroococcidiopsis sp., CClostridium themocellum, Ideonella sp., Leptolyngbya minuta, L. nodulosa, Marichromatum purpuratum, CPseudomonas stutzeri[49] Dendroctonus frontalis, D. terebrans, Ips avulsus/Enterobacter aerogenes, BE. agglomerans, E. sp.[20]
Pocillopora damicornis/BCAzospirillum brasilensis, ABradyrhizobium denitrificans, B. sp., Chlorobium limicola, C. phaeobacteroides, BKlebsiella pneumoniae, Klebsiella sp., ARhizobium rosettiformans, Sinorhizobium sp., Teredinibacter turnerae[49]; DAzotobacter chroococcum, BCAzospirillum halopraeferens, ABradyrhizobium denitrificans, Klebsiella sp., CPseudomonas stutzeri, Rhizobium sp.[96] Dendroctonus valens, D. rhizophagus /DRaoultella terrigena[21]
环节动物门Annelida、寡毛纲Clitellata Bactrocera tryoni/BCKlebsiella oxytoca[31]
Pheretima vittata/BCKlebsiella oxytoca[63] Ceratitis capitata/DCitrobacter freundii, Enterobacter sp., Erwinia amylovara, BCKlebsiella planticola, BDK. pneumoniae, BCK. oxytoca, Pectobacterium carotovora, P. cypripedii, BPantoea agglomerans[34]
节肢动物门Arthropoda软甲纲Malacostraca、磷虾目Euphausiacea;甲壳纲Crustacea、桡足亚纲Copepoda Acromyrmex octospinosus/Rhizobiales[39]
Euphausia sp., Copepods/Chlorobium tepidum, DChromatium purpuratum, Desulfobacter curvatus, Desulfonema limicola[66] Tetraponera binghami/Burkholderia sp., Flavobacterium sp., Rhizobium sp., Methylobacterium sp., Pseudomonas sp.[51]
昆虫纲Insecta 软体动物门Mollusca、双壳纲Bivalvia
Cryptocercus punctulatus/Desulfovibrio sp.[75] Lyrodus pedicellatus/Teredinibacter turnerae[97]
Mastotermes darwiniensis/DCitrobacter freundii[12]; Enterobacter sp., Flavobacterium sp., Streptococcus sp.[13]; Desulfovibrio sp.[22] 脊索动物门Chordata、辐鳍鱼纲Actinopterygii
Zootermopsis angusticollis/Treponema sp.[98] Panaque nigrolineatus/BDAzomonas macrocytogenes, AAzorhizobium doebereinerae, ABradyrhizobium japonicum, B. sp., Cellulosilyticum lentocellum, CClostridium arbusti, C. beijerinckii, CC. papyrosolvens, CC. tyrobutyricum, Desulfomonile tiedjei, Methylocystis parvus, M. sp., Opitutaceae, ASinorhizobium meliloti, CSphingomonas azotifigens[67]
Cryptotermes primus/Enterobacter sp., Streptococcus sp.[13] 脊索动物门Chordata、哺乳纲Mammalia
Coptotermes formosanus/BEnterobacter agglomerans[99]; Acinetobacter sp., BDKlebsiella pneumonia[100] Bos tauru/Acinetobacter baumannii, BCBacillus methylotrophicus, BB. sonorensis, CStaphylococcus caprae[72]
Coptotermes lacteus/DCitrobacter freundii[12]Enterobacter sp., Streptococcus sp.[13] Susscrofa domestica, Cavia porcellus/BCEnterobacter cloacae, Klebsiella aerogenes[79]
Heterotermes ferox/Enterobacter sp., Streptococcus sp.[13] Ochotona hyperborea/Bradyrhizobium sp., Bryantella formatexigens, Clostridium cellulovorans, DC. pasteurianum, Fibrobacter succinogenes subsp. succinogenes, Sphingomonas sp., Treponema sp.[101]
H. indicola/Desulfovibrio termitidis[22] Ochotona dauurica, Ochotona hyperborea, Ochotona mantchurica/Bradyrhizobium sp., Bryantella formatexigens, Clostridium cellulovorans, Fibrobacter succinogenes, Sphingomonas sp., Treponema sp.[89]
Reticulitermes lucifugus/Bacillus sp., Enterobacteriaceae, Erwinia sp., Rhodococcus sp., CStaphylococcus simulans, CS. haemolyticus[33] Meriones meridianus, M. tamariscinus/Bacillus sp., Corynebacterium sp., Enterobacteriaceae sp.[82]
Reticulitermes flavipes/Desulfovibrio desulfuricans[22] Microtus rossiaemeridionalis/Arthrobacter sp., Bacillus cereus, BB. licheniformis, BCB. subtilis, Bacteroides sp., Curtobacterium sp., Micrococcus sp., Myxococcales, Rhodococcus sp., Staphylococcus sp. [84]
Reticulitermes speratus/DClostridium pasteurianum, Desulfovibrio gigas, Methanobacterium ivanovii[94] Clethrionomys glareolus/BBacillus licheniformis, BCB. subtilis, Bacteroides sp., Enterobacteriaceae, Micrococcus sp., Myxococcales, Nocardia sp.[84]
Nasutitermes exitiosus/DCitrobacter freundii, Staphylococcus sp.[13] Homo sapiens/BCEnterobacter cloacae, Klebsiella aerogenes[79]; Coprococcus catus, C. comes, Desulfitobacterium hafniense, Eubacterium hallii, E. sp., BDKlebsiella pneumoniae, Lachnospira multipara, Methylocystis sp., Megasphaera elsdenii, Methanomassiliicoccus luminyensis, Ruminococcus obeum, Pyramidobactor piscolens, Roseburia sp.[93]
2.2 动物共生固氮菌的生态类型多样性

表 2所列动物共生固氮菌种类, 涵盖植物固氮菌和自生固氮菌等多种生态类型。其中40种曾作为植物共生固氮菌、植物内生固氮菌、植物根际固氮菌、自生固氮菌予以报道。植物共生固氮菌6种:德式固氮根瘤菌、Bradyrhizobium denitrificans、慢生大豆根瘤菌、百脉根中生根瘤菌、Rhizobium rosettiformans、苜蓿中华根瘤菌。植物内生固氮菌7种:固氮醋杆菌、巨胞氮单胞菌、地衣芽孢杆菌、索诺拉沙漠芽孢杆菌、聚团肠杆菌、变栖克雷伯氏菌、成团泛菌。植物根际固氮菌8种:热纤梭菌、溶纸莎草梭菌、酪丁酸梭菌、斯氏假单胞菌、Sphingomonas azotifigens、山羊葡萄球菌、溶血性葡萄球菌、模仿葡萄球菌。自生固氮菌8种:敏捷氮单胞菌、圆褐固氮菌、棕色固氮菌、着色菌、弗氏柠檬酸杆菌、巴氏固氮梭菌、需盐脱硫弧菌、土生拉乌尔菌。植物共生/内生固氮菌1种, 即洋葱伯克霍尔德菌。植物内生/根际固氮菌8种:巴西固氮螺菌、高盐固氮螺菌、生脂固氮螺菌、甲基营养芽孢杆菌、枯草芽胞杆菌、阴沟肠杆菌、植生克雷白氏菌、催娩克雷伯氏菌。植物内生/自生固氮菌2种:巨胞氮单胞菌和肺炎克雷伯氏菌。

2.3 固氮菌的生态类型转换

在固氮菌中较为常见, 兼性内生固氮菌, 如一些固氮螺菌属细菌, 既能在根内也能在根表和土壤中定殖[117]表 2中洋葱伯克霍尔德菌兼具植物共生固氮[102]和植物内生固氮能力[118]。巨胞氮单胞菌既是胡杨的内生固氮菌[114], 又是自生固氮菌[115]。Frohlich等[70]用象白蚁Nasutitermes nigriceps肠道分离获得的剑菌培养物, 对12种豆科植物进行接种试验, 在豌豆、印度田菁、葫芦巴上均形成了根瘤, 证实动物肠道固氮菌和植物共生固氮菌之间存在生态类型的转化。宾氏细长蚁中、后肠结合部有菌囊, 菌囊外密布气管和马氏管。囊内含有伯克霍尔德菌、黄质菌、根瘤菌、甲基杆菌、假单胞菌[51]。伯克霍尔德菌属于植物共生和自生固氮菌, 黄质菌可营植物内生固氮, 根瘤菌则属于植物共生/植物内生和自生固氮菌, 甲基杆菌是植物共生固氮菌常见类群, 假单胞菌在植物共生/植物内生/植物根际固氮菌中常有发现。上述结果表明蚂蚁体内菌囊的内部环境似乎比固氮植物的根瘤更复杂, 能包容许多固氮菌种类。一些不能形成植物根瘤的种类, 如黄质菌, 在菌囊内也能正常发育。

3 动物共生固氮菌的来源

动物肠道共生固氮菌可能是胚后发育过程中从环境中获得的, 具有兼性内共生菌的特点。主要依据:(1)一般认为, 动物肠道菌群是体外感染的, 反刍动物幼畜出生前其消化道内并无微生物, 出生后从母体和环境中接触各种微生物, 但是经过适应和选择, 只有少数微生物能在消化道定植、存活和繁殖, 并随着幼畜的生长和发育, 形成特定的微生物区系[119]。通常反刍动物在1—20日龄处于非反刍阶段, 21—56日龄处于过渡阶段, 57日龄后进入反刍阶段, 而在反刍功能完善过程中其胃肠道生理功能和微生物群落均会发生较大转变[120]。(2)哺乳动物也是天生无菌的, 但随着出生人类胃肠道开始有外来微生物栖息并定殖。新生儿出生1—2 d内, 兼性厌氧菌(大肠杆菌和链球菌)迅速定殖于胃肠道中, 而厌氧微生物直到出生后第2个月才开始出现。胃肠道微生物的组成在出生后一年内得以建立[121]。(3)珊瑚体内共生菌的传播存在垂直和水平两种途径, 而水平途径更常被人们所接受[122]。对鹿角珊瑚的共生固氮菌海洋弧菌Vibrio sp.进行15N标记, 标记后的海洋弧菌与4—5日龄鹿角珊瑚幼虫一起培养, 4 h后标记细菌已经被摄入[123]。(4)表 2所列不同动物体内共生固氮菌种类, 表现出较强的宿主栖境特色。如珊瑚、海绵、磷虾和桡足类等海洋动物含有鞘丝藻[18];粘囊藻、异球蓝细菌[23];纳氏拟筒孢藻、泡沫节球藻、红海束毛藻[25];泥生绿菌、船蛆杆菌[49];绿硫细菌、着色菌[66]等种类。隐尾蠊和低等白蚁常含有脱硫弧菌[23, 105]。芽孢杆菌常出现在奶牛[72]、子午沙鼠[82]、欧和普通田鼠体内[84]。此外, 还发现白蚁后肠和淡水沉积物中的螺旋体具有同源固氮酶基因, 且都具有固氮酶活性[97]

但用荧光标记的聚团肠杆菌和肺炎克雷伯氏菌饲喂地中海果蝇成虫, 在成虫消化道和卵表以及幼虫和蛹的消化道均检出上述细菌的存在[124]。说明肠道共生固氮菌也存在成虫-卵之间的垂直传递。Ayayee等在经过表面灭菌处理的光肩星天牛卵内检测到脲酶、固氮酶基因及其转录活性, 表明脲分解细菌和固氮菌存在通过遗传进行垂直传递的可能性[28]

4 动物共生菌固氮的性质

一般认为动物肠道共生菌固氮属于联合固氮, 柯为称白蚁肠道内固氮菌是一种“联合共生固氮形式”在动物界的出现[125]。祁永青等则将联合固氮菌定义为“必须生活在植物根际、叶面或动物肠道等处才能固氮的原核生物”[126]。另外有珊瑚和固氮细菌的互作联合固氮, 如石珊瑚和固氮菌属的联合固氮, 海洋蓝藻与海绵属形成内共生关系, 蛤类与蓝藻、固氮菌的联合固氮[127]。此外, 动物共生固氮菌固氮活性容易受环境影响, 也具有较明显的联合固氮特征。白蚁种类、品级以及不同季节等均影响固氮活性, 其中食物含氮量为主要影响因子, 其他因子在不同程度上也可溯及食物含氮量的关系[14]。食性对固氮活性的影响一般表现为低等食木白蚁固氮活性强, 高等培菌白蚁和食土白蚁固氮活性弱或没有活性[14]。在食料中添加(NH4)2SO4或KNO3均能显著减低台湾乳白蚁工蚁肠道共生固氮菌的固氮能力[9]。已经分离获得的固氮菌中, 许多种类属于兼性厌氧菌、生境较为广泛, 似乎与白蚁构成专性共生的可能性不大[14]。Vecherskii等对欧洲散白蚁共生菌固氮研究表明:活体和蚁巢物质在好氧和厌氧条件下均有固氮酶活性, 白蚁肠道内细菌群落与蚁巢物质的类似[33]。因此认为该种白蚁与共生固氮菌之间关系属于联合固氮作用。但也有研究表明动物肠道有特殊的含菌构造, 如宾氏细长蚁中、后肠结合部有类似于根瘤的菌囊, 囊内含有多种固氮菌[51]。此外, 固氮酶基因检测表明, 动物肠道固氮菌区系十分丰富, 能够分离培养的仅为其极少部分, 不能排除专性共生体系的存在。

5 动物共生菌固氮的微生境与共生复合体 5.1 动物共生菌固氮的微生境

氧气、氢气、pH和氧化还原电位等是肠道微生境的主要指标, 在肠道不同部位这些指标存在明显差异, 形成多样化的微生境, 供不同生理需求的固氮菌生长发育。低等白蚁大多数肠道微生物位于后肠前段膨大的后肠囊内。高等白蚁肠道区室化有逐渐复杂化的趋势, 食土白蚁后肠膨大形成连续的5个囊室, 相邻囊室之间以肌肉阀瓣分隔。消化道不同部位以及不同的后肠囊内氧气、氢气、pH和氧化还原电位均有差异[128]。黄肢散白蚁和象白蚁的后肠囊氧气浓度分布呈现两个不同区域, 外侧为微氧层, 约占后肠囊体积的60%, 其中生活的共生菌消耗掉向肠道内扩散的氧气, 形成氧阱, 造成后肠囊中心部分(40%)严格的厌氧环境。与此相反, 后肠囊中心部位氢气浓度最高, 并通过两个区域消耗氢气, 抑制其向外扩散。一个区域是临近后肠囊中心部位的肠腔区域, 另一个是后肠壁区域。氧气和氢气的上述分布特点使厌氧和微好氧微生物各得其所, 中心部分严格的厌氧环境是发酵生成乙酸酯的场所, 而乙酸酯是宿主昆虫的主要能源物质[129]。具角黑艳甲成虫的消化道分为前肠、中肠、前后肠和后后肠4段, 每段中心部位均有一个厌氧核心区, 由此向外氧气含量逐渐增高。放线菌和根瘤菌主要分布于前肠和后后肠。前后肠内表面肠壁细胞形态分化最大, 形成密集的胞窝和棘刺, 将空间进一步区室化供细菌、原生动物、线虫等定殖, 其中拟杆菌和梭菌为主要类群。该部位还是产甲烷古菌的唯一分布区域和共生菌固氮核心部位[130]

5.2 共生复合体

固氮菌一般与多种生物形成复合体, 以满足固氮过程的能源和固氮产物同化等方面的需求。台湾乳白蚁与后肠的伪披发虫Pseudotrichonympha grassii、伪披发虫内生菌Azobacteroides pseudotrichonymphae形成三重共生关系。食物通过口器和前肠粉碎、中肠消化吸收后, 形成较为纯粹的木质纤维素微粒, 这些微粒成为伪披发虫的食料, 经伪披发虫分解后形成能量物质, 为白蚁和固氮菌利用。A. pseudotrichonymphae则主要负责固氮和氮素营养的转化, 为披发虫和白蚁提供氮素营养[16]。隐尾蠊后肠内原生动物披发虫Barbulanympha体表有许多外共生的拟杆菌, 这些外共生菌具有固氮能力, 与隐尾蠊、披发虫构成三重共生复合体[75]。猪毛菜属的Salsola inermis为旱生植物, 与锥喙象以及锥喙象肠道固氮菌肺炎克雷伯氏菌形成三重共生。象甲形成紧密附着在植物根部的土室, 以此获得碳素、水分等营养并躲避敌害, 肺炎克雷伯氏菌通过共生固氮提供氮素营养, 并促进植物生长[17]。固氮菌一般与纤维素分解菌协同作用, 以满足各自对能量和氮素营养的需求。将黑翅土白蚁肠道分离的纤维素分解菌与固氮菌混合培养, 纤维素酶活性与固氮酶活性均有显著提高[131]。从奶牛瘤胃中分离的纤维素分解菌和固氮菌进行混合体外发酵, 混合菌株的添加对瘤胃的发酵也具有促进作用[132]。纤维素分解和固氮也可在同一种细菌体内完成。船蛆鳃上着生有Deshayes腺, 腺体细胞内的船蛆杆菌既可分解木质纤维素, 也可固氮[59, 61]

6 动物共生菌固氮产物的同化 6.1 动物体内氨同化途径

氨既是共生固氮的产物, 对组织细胞也具有毒害作用, 必须转化为有机氮素营养或及时清除。氨转化为含氮有机物主要有4种途径:(1)谷氨酰胺合成酶(GS)/谷氨酸合成酶(GOGAT)途径:氨与谷氨酸(Glu)在GS催化下生成谷氨酰胺(Gln), Gln在GOGAT催化下将氨基转移给α-酮戊二酸, 生成2分子Glu。GS有3类:GSⅠ主要存在于细菌;GSⅡ主要存在于植物共生细菌以及真核细胞中;GSⅢ发现于专性厌氧杆菌、一些厌氧细菌和蓝细菌。GS/GOGAT对氨的亲和性高, 主要在低氨浓度时发挥作用。(2)谷氨酸脱氢酶(GDH)途径:氨与α-酮戊二酸在GDH催化下生成Glu。GDH有两种, NAD-GDH降解谷氨酸, NADP-GDH用于谷氨酸的合成。GDH在高氨浓度时占主导作用。(3)丙氨酸脱氢酶(ADH)途径:ADH催化丙酮酸和铵生成丙氨酸;(4)天冬氨酸酶途径:催化延胡索酸和铵生成天冬氨酸[133]

6.2 反刍动物瘤胃氨的同化

主要由细菌和真菌完成, 瘤胃细菌可分为发酵结构性碳水化合物和发酵非结构性碳水化合物两类, 前者仅能利用氨作为氮源, 后者则可利用氨、氨基酸和肽作为氮源。结构性碳水化合物主要包括纤维素、半纤维素和木质素。瘤胃纤维分解菌对氨氮的利用主要是通过GDH和ADH途径。非结构性碳水化合物包括水溶性碳水化合物, 如单糖、双糖、低聚糖和一些多糖, 以及不溶于水的大分子多糖。非纤维分解菌对氨氮的利用主要是通过GDH路径和GS路径, 可以从头合成多种自身所需氨基酸, 且大多数不存在GOGAT路径。瘤胃厌氧真菌缺乏蛋白质降解能力, 可以以氨为唯一氮源合成自身所需氨基酸满足生长需求。GDH和GS-GOGAT途径是瘤胃真菌同化氨的2条主要路径[133]

6.3 珊瑚体内氨的同化

珊瑚对氨的同化由肠壁细胞与虫黄藻协同完成, 虫黄藻位于珊瑚肠壁细胞细胞质内, 能通过光合作用为珊瑚提供能量, 还能通过GS/GOGAT途径将氨转化为氨基酸(见图 1)。环境中的氨经珊瑚肠腔进入肠壁细胞质, 再进入虫黄藻细胞质, 通过GS/GOGAT途径转化为Gln和Glu。所形成的Gln、Glu可以直接转移进入珊瑚肠壁细胞质, 进而转化为其他氨基酸, 合成蛋白质。蛋白质代谢形成的氨又可扩散进入肠腔, 再次吸收利用或排出体外。肠壁细胞质也存在GS/GOGAT途径和GDH途径, 但转化速率明显低于虫黄藻共生体[135]

图 1 珊瑚-虫黄藻共生体氨同化吸收模型[135] Fig. 1 Model of ammonium assimilation in the coral-dinoflagellate symbiosis
6.4 白蚁体内纤维素分解、生物固氮与氨同化 6.4.1 台湾乳白蚁-伪披发虫-内生菌复合体

台湾乳白蚁后肠有原生动物伪披发虫Pseudotrichonympha grassii, 伪披发虫有内生菌Azobacteroides pseudotrichonymphae。后肠内的木质纤维素颗粒被伪披发虫吞噬, 降解为葡萄糖、木糖、糖醛酸等, 进一步发酵形成CO2和H2, 降解产物从批发虫细胞进入肠腔, 在产酸菌作用下形成乙酸酯, 成为能量物质。内生菌则发挥固氮和氮转化功能。披发虫细胞本身缺乏脲酶和GS, 固氮形成的氨必须在内生菌体内GS催化下生成Gln, 进而转化为其他氨基酸和辅因子。菌体内形成的氨基酸进入披发虫细胞质内进行含氮有机物转化, 所形成的脲和氨再进入菌体内进行Gln和氨基酸合成(图 2)[16]

图 2 台湾乳白蚁-伪披发虫-内生菌复合体共生作用模型[134] Fig. 2 Model of symbiosis among Coptotermes formosanus, Pseudotrichonympha grassii and its endosymbiotic bacteria
6.4.2 栖北散白蚁-固氮菌-披发虫-白蚁菌群-1(TG1)复合体

栖北散白蚁后肠内有原生动物披发虫Trichonympha agilis, 披发虫内生菌为白蚁菌群1(TG1), 后肠肠腔内还有共生固氮菌。木质纤维素颗粒在披发虫细胞质内分解形成葡萄糖-6-磷酸等碳水化合物, 并形成CO2、H2、乙酸酯等代谢产物。代谢产物进入肠腔, 在产酸菌作用下形成乙酸酯。肠腔内固氮菌形成的氨, 可以被披发虫吸收, 经过GS途径合成Gln后进入TG1菌体内, 转化为氨基酸和辅因子(见图 3)。后肠肠腔内的营养物、披发虫、细菌组成的营养液, 可能通过肛交哺和粪食性, 被蚁巢内不同个体分享[136]

图 3 栖北散白蚁-固氮菌-披发虫-白蚁菌群-1(TG1)复合体共生作用模型[136] Fig. 3 Model of symbiosis among Reticulitermes speratus, symbiotic nitrogen-fixing bacteria, Trichonympha agilis and TG1
6.4.3 白蚁共生菌固氮产物的吸收路径

Bentley用15N2作为氮源培养Nusutitermes corniger工蚁和兵蚁, 24h后分别检测肠道、头部、虫体其他部分固氮产物含量, 发现三类样品中均有固氮产物检出, 证实了共生菌固氮与产物同化现象[64]。不同部位固氮产物含量:工蚁为肠道>虫体其他部分>头部, 兵蚁为肠道>头部>虫体其他部分。肠道为固氮产物的最初形成场所, 固氮产物可以通过交哺在工蚁和兵蚁个体间转移, 从工蚁向兵蚁的转移为主流方向。Fujita等对栖北散白蚁的研究表明:溶菌酶活性主要分布于唾腺, 前肠的溶菌酶来源于唾腺[137]。蛋白酶活性和游离氨基酸含量中肠最高。推测栖北散白蚁通过唾腺分泌的溶菌酶分解肛交哺获得的含菌后肠液, 而溶菌酶进入中肠后被中肠蛋白酶分解失活, 在后肠中活性很低, 对后肠共生菌群较安全。此后, Fujita等采用15N2示踪对栖北散白蚁生物固氮产物同化途径进行研究, 固氮产物主要出现在后肠, 其次为嗉囊与中肠, 在头部以及虫体其他部分也有检出[36]。后肠、嗉囊与中肠内固氮产物首先出现, 一段时间后, 头部和虫体其他部分也出现固氮产物的踪迹。据此认为, 大部分固氮产物的同化吸收并不是在后肠完成的, 而是通过肛交哺转移到前肠, 在前肠和中肠完成酶解和吸收过程。

7 共生菌固氮在动物氮素营养中的地位

动物氮素营养可以来自于食物、非蛋白氮以及共生菌固氮, 其中非蛋白氮指氮素营养代谢形成的产物, 如尿素及其衍生物、氨及铵盐、酰胺化合物等, 非蛋白氮动物不能直接利用, 但可作为共生菌的氮源, 经共生菌转化后再次为动物利用。反刍动物的尿素在瘤胃中被细菌脲酶迅速水解成氨, 部分氨参与瘤胃内微生物蛋白的合成, 最终成为动物的氨基酸营养。另部分氨经由瘤胃扩散进入静脉, 随血液在肝脏处经鸟氨酸循环再次合成尿素。肝脏合成的尿素被称作内源尿素, 部分内源尿素可经由唾液或者血液再次返回到瘤胃内, 被瘤胃细菌重新利用[139-140]

鳞翅目、双翅目、脉翅目等全变态昆虫, 在老熟幼虫、预蛹或预成虫阶段, 则通过临时贮存非蛋白氮, 将其转化为氨, 合成新的氨基酸和蛋白质以满足结茧等特殊行为的需求[140-141]。栖北散白蚁将尿酸贮存在脂肪体尿盐细胞内, 需要动用时, 尿盐释入血淋巴, 被马氏管摄取后排泄进入后肠腔, 在后肠共生细菌作用下分解为氨, 通过氨的同化进入氮素营养循环[142]

氨不仅对生物固氮具有氨阻遏效应, 对细胞还具有毒性, 动物体内氮素代谢涉及营养和解毒等许多方面。通过食物氮、非蛋白氮以及生物固氮相互协调, 形成营养和解毒的代谢网络, 共同维持动物体内氮素营养的动态平衡。当食物中蛋白质营养丰富, 非蛋白氮代谢产物含量高, 动物体以解毒排泄为主, 非蛋白氮的再利用以及生物固氮处于抑制状态;贫氮营养型动物, 则通过非蛋白氮的循环利用和生物固氮, 补充食物中氮素营养的不足。这些贫氮营养型动物, 如白蚁、珊瑚、食草动物等, 一般具有较高的共生菌固氮活性。生物固氮需要消耗很多能量, 大量能源物质应用于氮素营养的合成, 势必影响动物体内的能量权衡。因此, 即使是具有共生菌固氮能力的白蚁, 也依然对富氮营养食物表现出较强的趋性。取食含氮量高的食物时, 体内共生固氮量下降[65]

8 结语

一般认为, 动物的共生菌固氮主要存在于贫氮营养型动物, 但现有报道涉及的动物达到7门13纲23目50科99属174种, 已远超上述范围。从海绵到人类, 涉及低等到高等多种动物类群。虽然其中有些种类仅为固氮酶基因检出的结果, 这些基因表达情况还有待进一步确认, 但共生菌固氮可能是动物中普遍存在的现象。所涉及的固氮菌类群也十分丰富, 其中大多数种类为细菌, 也有少数古菌和藻类。已经发现的动物共生固氮菌种类与植物固氮菌具有明显的交叉性, 植物共生固氮菌、植物内生固氮菌、植物根际固氮菌和自生固氮菌在不同动物肠道内均有发现。这些情况似乎表明生物固氮可能具有统一的固氮菌资源库, 同一种固氮菌与植物共生、与动物共生或者自由生活, 只是固氮菌对生境的选择, 取决于环境条件是否能满足特定固氮菌固氮活性表达的需要。如电子和质子供体、能量供给、固氮酶活性保护以及解除氨阻遏等。这也表明动物肠道具有丰富的微生境, 能满足不同固氮菌的生理需求。动物共生固氮菌将会成为生物固氮资源开发的富矿, 在生物固氮研究、发酵工业、动物营养等领域展示其重要价值。

分子生物学技术的应用, 对动物共生固氮研究发挥了很大的促进作用。但所发现的固氮菌资源以及固氮机理的理论模型, 与具体情况的解释验证还有相当距离。动物共生菌固氮过程一般由多种动物和细菌组成的复合体, 分别完成电子和质子提供、能量保障、氧阱形成以及氨的同化等任务。目前对这些过程基本上还不了解。动物共生固氮、植物共生固氮、自生固氮在固氮产物氨的同化方面均采用GS/GOGAT、GDH和ADH等途径, 但不同生物体内相关途径的酶系来源存在较大差异。动物体内氨同化酶系是否完全源于共生菌?酶系来源差异影响动物营养代谢的机制如何等等, 也是动物共生固氮机理研究的基本问题。此外, 动物共生菌固氮的性质也需要研究确认。总体上, 动物通过食物摄取、非蛋白氮排泄或循环利用以及共生菌固氮等途径, 维持体内氮素营养的平衡和氮素代谢末端产物的降解排泄, 随着研究的深入, 将进一步加深人们对氮素资源利用和动物营养生理等方面的理解。

参考文献
[1]
黄小芳, 董俊德, 张燕英, 凌娟, 陈蕾. 海洋固氮微生物与环境因子关系综述. 生态学杂志, 2012, 31(4): 1028-1033.
[2]
Peklo J, Satava J. Fixation of free nitrogen by bark beetles. Nature, 1949, 163(4139): 336-337. DOI:10.1038/163336a0
[3]
Cleveland L R. The ability of termites to live perhaps indefinitely on a diet of pure cellulose. The Biological Bulletin, 1925, 48(4): 289-293. DOI:10.2307/1536574
[4]
Leach J G, Granovsky A A. Nitrogen in the nutrition of termites. Science, 1938, 87(2247): 66-67.
[5]
Hungate R E. Experiments on the nitrogen economy of termites. Annals of the Entomological Society of America, 1941, 34(2): 467-489. DOI:10.1093/aesa/34.2.467
[6]
Smith J D. Symbiotic micro-organisms of aphids and fixation of atmospheric nitrogen. Nature, 1948, 162(4128): 930-931.
[7]
Peklo J, Šatava J. Fixation of free nitrogen by insects. Experientia, 1950, 6(5): 190-192. DOI:10.1007/BF02296621
[8]
Benemann J R. Nitrogen fixation in termites. Science, 1973, 181(4095): 164-165. DOI:10.1126/science.181.4095.164
[9]
Breznak J A, Brill W J, Mertins J W, Coppel H C. Nitrogen fixation in termites. Nature, 1973, 244(5418): 577-580. DOI:10.1038/244577a0
[10]
Breznak J A, Mertins J W, Coppel H C. Nitrogen fixation and methane production in a wood-eating cockroach, Cryptocercus punctulatus Scudder (Orthoptera:Blattidae). Forestry Research Notes, 1974, 184: 1-2.
[11]
Allen J S. A Preliminary Study of Nitrogen Fixation in Wood-Boring-Insects and Decayed Wood[D]. Durham: Durham University, 1982.
[12]
French J R J, Turner G L, Bradbury J F. Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology, 1976, 95(2): 202-206. DOI:10.1099/00221287-95-2-202
[13]
Eutick M L, O'Brien R W, Slaytor M. Bacteria from the gut of Australian termites. Applied and Environmental Microbiology, 1978, 35(5): 823-828.
[14]
王亚召, 嵇保中, 刘曙雯, 丁芳. 白蚁共生菌固氮研究进展. 应用与环境生物学报, 2016, 22(2): 342-349.
[15]
Reid N M, Addison S L, Macdonald L J, Lloyd-Jones G. Biodiversity of active and inactive bacteria in the gut flora of wood-feeding Huhu beetle larvae (Prionoplus reticularis). Applied and Environmental Microbiology, 2011, 77(19): 7000-7006. DOI:10.1128/AEM.05609-11
[16]
Hongoh Y, Sharma V K, Prakash T, Noda S, Toh H, Taylor T D, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. Genome of an endosymbiont coupling N2fixation to cellulolysis within protist cells in termite gut. Science, 2008, 322(5904): 1108-1109. DOI:10.1126/science.1165578
[17]
Shelef O, Helman Y, Friedman A L L, Behar A, Rachmilevitch S. Tri-party underground symbiosis between a weevil, bacteria and a desert plant. PLoS One, 2013, 8(11): e76588. DOI:10.1371/journal.pone.0076588
[18]
Mohamed N M, Colman A S, Tal Y, Hill R T. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environmental Microbiology, 2008, 10(11): 2910-2921. DOI:10.1111/emi.2008.10.issue-11
[19]
Yamada A, Inoue T, Wiwatwitaya D, Ohkuma M, Kudo T, Sugimoto A. Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems, 2006, 9(1): 75-83. DOI:10.1007/s10021-005-0024-7
[20]
Bridges J R. Nitrogen-fixing bacteria associated with bark beetles. Microbial Ecology, 1981, 7(2): 131-137. DOI:10.1007/BF02032495
[21]
Morales-Jiménez J, de León A V P, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae:Scolytinae). Microbial Ecology, 2013, 66(1): 200-210. DOI:10.1007/s00248-013-0206-3
[22]
Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H. A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology, 1996, 19(2): 139-149. DOI:10.1016/S0723-2020(96)80039-7
[23]
Lema K A, Bourne D G, Willis B L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Molecular Ecology, 2014, 23(19): 4682-4695. DOI:10.1111/mec.12899
[24]
Ulyshen M D. Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology, 2015, 40(S1): 97-112.
[25]
Lema K A, Willis B L, Bourne D G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Applied and Environmental Microbiology, 2012, 78(9): 3136-3144. DOI:10.1128/AEM.07800-11
[26]
Breznak J A. Intestinal microbiota of termites and other xylophagous insects. Annual Review of Microbiology, 1982, 36: 323-343. DOI:10.1146/annurev.mi.36.100182.001543
[27]
陈蕾, 张燕英, 董俊德, 凌娟, 潘虎, 张偲, 龙丽娟. 三亚湾壮实鹿角珊瑚组织内共附生固氮菌多样性分析. 科学通报, 2013, 58(17): 1596-1603.
[28]
Ayayee P, Rosa C, Ferry J G, Felton G, Saunders M, Hoover K. Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environmental Entomology, 2014, 43(4): 903-912. DOI:10.1603/EN14045
[29]
Williams W M, Viner A B, Broughton W J. Nitrogen fixation (acetylene reduction) associated with the living coral Acropora variabilis. Marine Biology, 1987, 94(4): 531-535. DOI:10.1007/BF00431399
[30]
Du X, Li X J, Wang Y, Peng J X, Hong H Z, Yang H. Phylogenetic diversity of nitrogen fixation genes in the intestinal tract of Reticulitermes chinensis snyder. Current Microbiology, 2012, 65(5): 547-551. DOI:10.1007/s00284-012-0185-5
[31]
Murphy K M, Teakle D S, MacRae I C. Kinetics of colonization of adult queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Applied and Environmental Microbiology, 1994, 60(7): 2508-2517.
[32]
Zhang Y Y, Yang Q S, Ling J, van Nostrand J D, Shi Z, Zhou J Z, Dong J D. The shifts of diazotrophic communities in spring and summer associated with coral Galaxea astreata, Pavona decussata, and Porites lutea. Frontiers in Microbiology, 2016, 7: 1870.
[33]
Vecherskii M V, Kostina N V, Gorlenko M V, Dobrovol'skaya T G, Umarov M M. Specific features of nitrogen fixation in the termite Reticulitermes lucifugus. Biology Bulletin, 2008, 35(5): 446-451. DOI:10.1134/S1062359008050026
[34]
Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Molecular Ecology, 2005, 14(9): 2637-2643. DOI:10.1111/mec.2005.14.issue-9
[35]
Olson N D, Ainsworth T D, Gates R D, Takabayashi M. Diazotrophic bacteria associated with Hawaiian Montipora corals:diversity and abundance in correlation with symbiotic dinoflagellates. Journal of Experimental Marine Biology and Ecology, 2009, 371(2): 140-146. DOI:10.1016/j.jembe.2009.01.012
[36]
Fujita A, Abe T. Atmospheric nitrogen assimilation by a wood-feeding termite, Reticulitermes speratus (Isoptera:Rhinotermitidae). Sociobiology, 2006, 47(1): 175-188.
[37]
Thompson B M. Community ecology and sirex noctilio: interactions with microbial symbionts and native insects[D]. College Park, Maryland: University of Maryland, 2013.
[38]
Middelburg J J, Mueller C E, Veuger B, Larsson A I, Form A, van Oevelen D. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Scientific Reports, 2015, 5: 17962.
[39]
Sapountzis P, Zhukova M, Hansen L H, Sørensen S J, Schiøtt M, Boomsma J J. Acromyrmex leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential. Applied and Environmental Microbiology, 2015, 81(16): 5527-5537. DOI:10.1128/AEM.00961-15
[40]
Olson N D, Lesser M P. Diazotrophic diversity in the caribbean coral, Montastraea cavernosa. Archives of Microbiology, 2013, 195(12): 853-859. DOI:10.1007/s00203-013-0937-z
[41]
Grover R, Ferrier-Pagès C, Maguer J F, Ezzat L, Fine M. Nitrogen fixation in the mucus of Red Sea corals. Journal of Experimental Biology, 2014, 217(22): 3962-3963. DOI:10.1242/jeb.111591
[42]
Curtis A D, Waller D A. Changes in nitrogen fixation rates in termites (Isoptera:Rhinotermitidae) maintained in the laboratory. Annals of the Entomological Society of America, 1995, 88(6): 764-767. DOI:10.1093/aesa/88.6.764
[43]
Curtis A D, Waller D A. Variation in rates of nitrogen fixation in termites:response to dietary nitrogen in the field and laboratory. Physiological Entomology, 1997, 22(4): 303-309. DOI:10.1111/j.1365-3032.1997.tb01173.x
[44]
Russell J A, Moreau C S, Goldman-Huertas B, Fujiwara M, Lohman D J, Pierce N E. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21236-21241. DOI:10.1073/pnas.0907926106
[45]
Curtis A D, Waller D A. Seasonal patterns of nitrogen fixation in termites. Functional Ecology, 1998, 12(5): 803-807. DOI:10.1046/j.1365-2435.1998.00248.x
[46]
Stoll S, Gadau J, Gross R, Feldhaar H. Bacterial microbiota associated with ants of the genus Tetraponera. Biological Journal of the Linnean Society, 2007, 90(3): 399-412. DOI:10.1111/(ISSN)1095-8312
[47]
Waller D A, Curtis A D. Effects of sugar-treated foods on preference and nitrogen fixation in Reticulitermes flavipes (Kollar) and Reticulitermes virginicus (Banks) (Isoptera:Rhinotermitidae). Annals of the Entomological Society of America, 2003, 96(1): 81-85. DOI:10.1603/0013-8746(2003)096[0081:EOSTFO]2.0.CO;2
[48]
Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals:evidence for coral-bacteria interactions. Marine Ecology Progress Series, 1994, 111: 259-264. DOI:10.3354/meps111259
[49]
Yang Q S, Dong J D, Zhang Y Y, Ling J, Wang D X, Wu M L, Jiang Y F, Zhang Y Z. Diversity analysis of diazotrophs associated with corals from Xisha and Sanya, South China Sea. Aquatic Ecosystem Health & Management, 2015, 18(4): 433-442.
[50]
Rädecker N, Meyer F W, Bednarz V N, Cardini U, Wild C. Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Marine Ecology Progress Series, 2014, 511: 297-302. DOI:10.3354/meps10912
[51]
van Borm S, Buschinger A, Boomsma J J, Billen J. Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proceedings of the Royal Society B:Biological Sciences, 2002, 269(1504): 2023-2027. DOI:10.1098/rspb.2002.2101
[52]
Petersen J M, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, Bulgheresi S, Mußmann M, Herbold C, Seah B K B, Antony C P, Liu D, Belitz A, Weber M. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nature Microbiology, 2016, 2: 16195.
[53]
Citernesi U, Neglia R, Seritti A, Lepidi A A, Filippi C, Bagnoli G, Nuti M P, Galluzzi R. Nitrogen fixation in the gastro-enteric cavity of soil animals. Soil Biology and Biochemistry, 1977, 9(1): 71-72. DOI:10.1016/0038-0717(77)90064-5
[54]
Ŝimek M, Pižl V, Chalupský J. The effect of some terrestrial oligochaeta on nitrogenase activity in the soil. Plant and Soil, 1991, 137(1): 161-165. DOI:10.1007/BF02187449
[55]
Schaefer D A, Whitford W G. Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia, 1981, 48(2): 277-283. DOI:10.1007/BF00347977
[56]
Distel D L, DeLong E F, Waterbury J B. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae:Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Applied and Environmental Microbiology, 1991, 57(8): 2376-2382.
[57]
Tayasu I, Abe T, Eggleton P, Bignell D E. Nitrogen and carbon isotope ratios in termites:an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology, 1997, 22(3): 343-351. DOI:10.1046/j.1365-2311.1997.00070.x
[58]
Sapountzis P, de Verges J, Rousk K, Cilliers M, Vorster B J, Poulsen M. Potential for nitrogen fixation in the fungus-growing termite symbiosis. Frontiers in Microbiology, 2016, 7: 1993.
[59]
Horak R E A, Montoya J P. Growth, nitrogen fixation, respiration, and a nitrogen budget for cultures of a cosmopolitan diazotrophic endosymbiont (Teredinibacter turnerae) of shipworms. Journal of the Marine Biological Association of the United Kingdom, 2014, 94(1): 177-185. DOI:10.1017/S0025315413001483
[60]
Gomathi V, Ramalakshmi A, Ramasamy K. Isolation of nitrogen fixing bacteria from fungus termites. Entomological Research, 2005, 35(2): 75-78. DOI:10.1111/enr.2005.35.issue-2
[61]
Waterbury J B, Calloway C B, Turner R D. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (Bivalvia:Teredinidae). Science, 1983, 221(4618): 1401-1403. DOI:10.1126/science.221.4618.1401
[62]
Carpenter E J, Culliney J L. Nitrogen fixation in marine shipworms. Science, 1975, 187(4176): 551-552. DOI:10.1126/science.187.4176.551
[63]
Risal C P, Ozawa T. Isolation and characterization of diazotrophs from the intestinal tract of an earthworm (Pheretima vittata). Soil Science and Plant Nutrition, 2002, 48(1): 101-103. DOI:10.1080/00380768.2002.10409177
[64]
Bentley B L. Nitrogen fixation in termites:fate of newly fixed nitrogen. Journal of Insect Physiology, 1984, 30(8): 653-655. DOI:10.1016/0022-1910(84)90050-7
[65]
Prestwich G D, Bentley B L, Carpenter E J. Nitrogen sources for neotropical nasute termites:fixation and selective foraging. Oecologia, 1980, 46(3): 397-401. DOI:10.1007/BF00346270
[66]
Braun S T, Proctor L M, Zani S, Mellon M T, Zehr J P. Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiology Ecology, 1999, 28(3): 273-279. DOI:10.1111/fem.1999.28.issue-3
[67]
McDonald R, Zhang F, Watts J E M, Schreier H J. Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. The ISME Journal, 2015, 9(12): 2712-2724. DOI:10.1038/ismej.2015.65
[68]
Vecherskii M V, Kuznetsova T A, Kostina N V, Gorlenko M V, Golichenkov M V, Umarov M M, Naumova E I. Role of microbiocenosis of the gastrointestinal tract in the nutrition of grouse. Biology Bulletin, 2014, 41(3): 251-254. DOI:10.1134/S1062359014030108
[69]
Loick-Wilde N, Dutz J, Miltner A, Gehre M, Montoya J P, Voss M. Incorporation of nitrogen from N2 fixation into amino acids of zooplankton. Limnology and Oceanography, 2012, 57(1): 199-210. DOI:10.4319/lo.2012.57.1.0199
[70]
Fröhlich J, Koustiane C, Kämpfer P, Rosselló-Mora R, Valens M, Berchtold M, Kuhnig T, Hertel H, Maheshwari D K, König H. Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps. Systematic and Applied Microbiology, 2007, 30(1): 68-74. DOI:10.1016/j.syapm.2006.03.001
[71]
Ohkuma M, Noda S, Kudo T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Applied and Environmental Microbiology, 1999, 65(11): 4926-4934.
[72]
张广亮, 刘大森, 吕宗浩, 黄国欣, 杜江华. 奶牛瘤胃液和瘤胃残渣来源固氮菌的比较研究. 饲料工业, 2016, 37(11): 51-55.
[73]
Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson T H, Stege J T, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe S G, Podar M, Martin H G, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides N C, Matson E G, Ottesen E A, Zhang X N, Hernández M, Murillo C, Acosta L G, Rigoutsos I, Tamayo G, Green B D, Chang C, Rubin E M, Mathur E J, Robertson D E, Hugenholtz P, Leadbetter J R. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169): 560-565. DOI:10.1038/nature06269
[74]
冀德君, 周为琴, 严宏翔, 赵国琦. 山羊瘤胃中固氮细菌的分离与初步鉴定. 家畜生态学报, 2006, 27(3): 74-77. DOI:10.3969/j.issn.1673-1182.2006.03.017
[75]
Tai V, Carpenter K J, Weber P K, Nalepa C A, Perlman S J, Keeling P J. Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Applied and Environmental Microbiology, 2016, 82(15): 4682-4695. DOI:10.1128/AEM.00611-16
[76]
Jones K, Thomas J G. Nitrogen fixation by the rumen contents of sheep. Journal of General Microbiology, 1974, 85(1): 97-101. DOI:10.1099/00221287-85-1-97
[77]
纪金春. 绵羊瘤胃液中固氮菌的分离及其特性的研究. 青海畜牧兽医杂志, 1993, 23(2): 7-9.
[78]
Elleway R F, Sabine J R, Nicholas D J D. Acetylene reduction by rumen microflora. Archiv für Mikrobiologie, 1971, 76(4): 277-291. DOI:10.1007/BF00408525
[79]
Bergersen F J, Hipsley E H. The presence of N2-fixing bacteria in the intestines of man and animals. Journal of General Microbiology, 1970, 60(1): 61-65. DOI:10.1099/00221287-60-1-61
[80]
Guo C, Sun L Q, Kong D, Sun M J, Zhao K. Klebsiella variicola, a nitrogen fixing activity endophytic bacterium isolated from the gut of Odontotermes formosanu. African Journal of Microbiology Research, 2014, 8(12): 1322-1330. DOI:10.5897/AJMR
[81]
Vecherskii M V, Naumova E I, Kostina N V, Umarov M M. Assimilation of biological nitrogen by european beaver. Biology Bulletin, 2009, 36(1): 92-95. DOI:10.1134/S1062359009010142
[82]
Kuznetsova T A, Kostina N V, Naumova E I, Umarov M M. Microbial nitrogen fixation in the gastro-intestinal tract of kalmykia gerbils (M. tamariscinus and Meriones meridianus). Biology Bulletin, 2010, 37(5): 476-479. DOI:10.1134/S1062359010050067
[83]
Reid N M, Lloyd-Jones G. Symbiotic nitrogen fixation in the New Zealand dampwood termite (Stolotermes ruficeps). New Zealand Journal of Ecology, 2009, 33(1): 90-95.
[84]
Manaeva E S, Naumova E I, Kostina N V, Umarov M M, Dobrovol'skaya T G. Functional features of microbial communities in the digestive tract of field voles (Microtus rossiaemeridionalis and Clethrionomys glareolus). Biology Bulletin, 2012, 39(4): 346-350. DOI:10.1134/S106235901204005X
[85]
Varshavskii A A, Puzachenko A Y, Naumova E I, Kostina N V. The enzymatic activity of the gastrointestinal tract microflora of the greater mole rat (Spalax microphtalmus, Spalacidae, Rodentia). Doklady Biological Sciences, 2003, 392(1/6): 439-441. DOI:10.1023/A:1026192208688
[86]
Shukla S P, Sanders J G, Byrne M J, Pierce N E. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Molecular Ecology, 2016, 25(24): 6092-6106. DOI:10.1111/mec.2016.25.issue-24
[87]
Kuranouchi T, Nakamura T, Shimamura S, Kojima H, Goka K, Okabe K, Mochizuki A. Nitrogen fixation in the stag beetle, Dorcus (Macrodorcus) rectus (Motschulsky) (Col., Lucanidae). Journal of Applied Entomology, 2006, 130(9/10): 471-472.
[88]
Ceja-Navarro J A, Nguyen N H, Karaoz U, Gross S R, Herman D J, Andersen G L, Bruns T D, Pett-Ridge J, Blackwell M, Brodie E L. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. The ISME Journal, 2014, 8(1): 6-18. DOI:10.1038/ismej.2013.134
[89]
Kizilova A K, Kravchenko I K. Diversity of diazotrophic gut inhabitants of pikas (Ochotonidae) revealed by PCR-DGGE analysis. Microbiology, 2014, 83(3): 288-295. DOI:10.1134/S0026261714010068
[90]
Golichenkov M V, Kostina N V, Ul'yanova T A, Kuznetsova T A, Umarov M M. Diazotrophs in the digestive tract of termite Neotermes castaneus. Biology Bulletin, 2006, 33(5): 508-512. DOI:10.1134/S106235900605013X
[91]
Samoylova E S, Kostina N V, Striganova B R. Non-symbiotic nitrogen fixation in the intestine of click beetle larvae (Coleoptera, Elateridae). Doklady Biological Sciences, 2015, 461(1): 92-95. DOI:10.1134/S0012496615020052
[92]
Hewitt P H, van der Westhuizen M C, van der Linde T C de K, Adam R A. Acetylene reduction by the harvester termite Hodotermes mossambicus (Hagen). Journal of the Entomological Society of Southern Africa, 1987, 50(2): 513-520.
[93]
Igai K, Itakura M, Nishijima S, Tsurumaru H, Suda W, Tsutaya T, Tomitsuka E, Tadokoro K, Baba J, Odani S, Natsuhara K, Morita A, Yoneda M, Greenhill A R, Horwood P F, Inoue J I, Ohkuma M, Hongoh Y, Yamamoto T, Siba P M, Hattori M, Minamisawa K, Umezaki M. Nitrogen fixation and nifH diversity in human gut microbiota. Scientific Reports, 2016, 6: 31942. DOI:10.1038/srep31942
[94]
Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T. Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology, 1996, 62(8): 2747-2752.
[95]
Wu T, Kong D, Sun L Q, Guo C, Sun M J, Zhao K. Identification of a nitrogen fixation endophyte from Odontotermes formosanus. Journal of Pure and Applied Microbiology, 2014, 8(2): 1669-1674.
[96]
黄小芳, 陈蕾, 张燕英, 凌娟, 龙丽娟, 张偲, 董俊德. 基于RFLP技术的鹿角杯形珊瑚共附生固氮菌多样性分析. 生态学报, 2013, 34(20): 5875-5886.
[97]
Distel D L, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic γ-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia:Teredinidae). International Journal of Systematic and Evolutionary Microbiology, 2002, 52(6): 2261-2269.
[98]
Lilburn T G, Kim K S, Ostrom N E, Byzek K R, Leadbetter J R, Breznak J A. Nitrogen fixation by symbiotic and free-living spirochetes. Science, 2001, 292(5526): 2495-2498. DOI:10.1126/science.1060281
[99]
Potrikus C J, Breznak J A. Nitrogen-fixing enterobacter agglomerans isolated from guts of wood-eating termites. Applied and Environmental Microbiology, 1977, 33(2): 392-399.
[100]
Doolittle M, Raina A, Lax A, Boopathy R. Presence of nitrogen fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus). Bioresource Technology, 2008, 99(8): 3297-3300. DOI:10.1016/j.biortech.2007.07.013
[101]
Formozov N A, Kizilova A K, Panteleeva A N, Naumova E I. Nitrogen fixation as a possible physiological basis of coprophagy in Pikas (Ochotona, Lagomorpha, Mammalia). Doklady Biological Sciences, 2012, 443(1): 126-129. DOI:10.1134/S0012496612020172
[102]
蒲强, 谭志远, 彭桂香, 李永涛, 刘丽辉, 张海春, 曹禺. 根瘤菌分类的新进展. 微生物学通报, 2016, 43(3): 619-633.
[103]
覃丽萍, 黄思良, 李杨瑞. 植物内生固氮菌的研究进展. 中国农学通报, 2005, 21(2): 150-152, 159-159. DOI:10.3969/j.issn.1000-6850.2005.02.048
[104]
徐正金, 罗明, 王卫霞, 王纯利. 3种典型荒漠灌木内生固氮菌及固氮酶基因nifH多样性分析. 中国沙漠, 2014, 34(2): 472-480.
[105]
原红娟, 严慧, 杨芳, 彭桂香, 谭志远. 澳洲野生稻(Oryza australiensis)内生固氮菌的分子鉴定及发育分析. 应用与环境生物学报, 2014, 20(4): 571-577.
[106]
尹坤, 阳洁, 顾文杰, 袁涛, 谭志远. 岑溪药用野生稻高效内生固氮菌分离及促生特性. 微生物学通报, 2015, 42(8): 1482-1491.
[107]
谭志远, 彭桂香, 徐培智, 艾绍英, 唐拴虎, 张国霞, 曾凤云. 普通野生稻(Oryza rufipogon)内生固氮菌多样性及高固氮酶活性. 科学通报, 2009, 54(13): 1885-1893.
[108]
李艳星, 郭平毅, 孙建光. 块根块茎类作物内生固氮菌分离鉴定、系统发育与促生特性. 中国农业科学, 2017, 50(1): 104-122.
[109]
罗青.福建省稻田土壤固氮微生物多态性研究[D].福州: 福建农林大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10389-2006160127.htm
[110]
彭方仁, 梁有旺, 蔡苗, 陈隆升, 陈永忠. 油茶根际联合固氮菌的16SrDNA全序列分析. 南京林业大学学报:自然科学版, 2014, 38(1): 27-30.
[111]
刘晓璐, 杨柳青, 吕乐, 郭涛, 刘永智, 赵鹏, 董昕, 闫海. 烟草根际固氮菌的筛选、鉴定及优化培养. 中国烟草学报, 2015, 21(1): 89-94.
[112]
韩晓阳, 李智, 张丽霞, 黄晓琴. 茶园土壤高活性固氮菌的筛选鉴定及接种效果初步研究. 茶叶科学, 2014, 34(5): 497-505. DOI:10.3969/j.issn.1000-369X.2014.05.011
[113]
卢佳思, 尚立国, 战嵛华, 陆伟, 张云华, 燕永亮. 固氮施氏假单胞菌bifA基因的功能分析. 中国农业科技导报, 2016, 18(3): 67-73.
[114]
吾尔麦提汗·麦麦提明, 卡依尔·玉素甫, 热孜亚·艾肯, 布阿依夏姆·阿木提, 努丽曼姑·司马义, 买孜拉木·肉扎洪, 麦合甫再木·阿布都热合曼, 马相汝, 艾尔肯·热合曼. 塔里木胡杨林可培养胡杨内生细菌多样性与群落结构的时空演变格局. 生态学报, 2014, 34(22): 6622-6639.
[115]
于新宁.小叶罗汉松、竹柏根瘤内生细菌的分离和鉴定[D].南宁: 广西大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10593-2005088850.htm
[116]
罗霆, 欧阳雪庆, 杨丽涛, 李杨瑞. 1株有固氮能力的甘蔗克雷伯氏菌的分离鉴定及固氮特性. 热带作物学报, 2010, 31(6): 972-978. DOI:10.3969/j.issn.1000-2561.2010.06.018
[117]
张美琴, 马建华, 赵月英, 田自华, 樊明寿. 植物联合固氮菌及其促生作用研究进展. 内蒙古农业科技, 2007(4): 80-83. DOI:10.3969/j.issn.1007-0907.2007.04.031
[118]
孙建光, 罗琼, 高淼, 胡海燕, 徐晶, 周义清. 小麦、水稻、玉米、白菜、芹菜内生固氮菌及其系统发育. 中国农业科学, 2012, 45(7): 1303-1317.
[119]
武彦芳. 反刍动物的营养代谢特性. 山东畜牧兽医, 2016, 37(3): 1-13. DOI:10.3969/j.issn.1007-1733.2016.03.001
[120]
李小鹏, 焦金真, 颜琼娴, 谭支良. 山羊羔羊回肠细菌群落定植与消化功能的发育性变化. 动物营养学报, 2016, 28(3): 731-738. DOI:10.3969/j.issn.1006-267x.2016.03.013
[121]
许波, 杨富亚, 慕跃林, 李俊俊, 唐湘华, 杨云娟, 黄遵锡. 胃肠道微生物及其分子生态学技术研究进展. 微生物学通报, 2014, 41(1): 136-145.
[122]
周进, 晋慧, 蔡中华. 微生物在珊瑚礁生态系统中的作用与功能. 应用生态学报, 2014, 25(3): 919-930.
[123]
Lema K A, Clode P L, Kilburn M R, Thornton R, Willis B L, Bourne D G. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. The ISME Journal, 2016, 10(7): 1804-1808. DOI:10.1038/ismej.2015.229
[124]
Lauzon C R, McCombs S D, Potter S E, Peabody N C. Establishment and vertical Passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera:Tephritidae). Annals of the Entomological Society of America, 2009, 102(1): 85-95. DOI:10.1603/008.102.0109
[125]
柯为. 生物固氮研究新进展. 生物工程学报, 2001, 17(6): 672-672. DOI:10.3321/j.issn:1000-3061.2001.06.033
[126]
祁永青, 刁治民, 刘涛, 高晓杰. 联合固氮菌对植物促生作用的研究进展. 青海草业, 2008, 17(4): 22-27, 30-30. DOI:10.3969/j.issn.1008-1445.2008.04.005
[127]
董俊德, 王汉奎, 张偲, 黄良民, 王肇鼎. 海洋固氮生物多样性及其对海洋生产力的氮、碳贡献. 生态学报, 2002, 22(10): 1741-1749. DOI:10.3321/j.issn:1000-0933.2002.10.024
[128]
Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion//Bignell D E, Roisin Y, Lo N, eds. Biology of Termites: A Modern Synthesis. Dordrecht: Springer, 2010: 439-475.
[129]
Breznak J A. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites//Abe T, Bignell D E, Higashi M, eds. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Springer, 2000: 209-231.
[130]
Nardi J B, Bee C M, Miller L A, Nguyen N H, Suh S O, Blackwell M. Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod Structure & Development, 2006, 35(1): 57-68.
[131]
常志威.白蚁肠道固氮菌与纤维素分解菌混合培养及固氮酶基因克隆[D].哈尔滨: 黑龙江大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10212-1015505778.htm
[132]
李昊.固氮菌和纤维素分解菌的分离及混合添加对瘤胃发酵的影响.哈尔滨: 东北农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10224-1013207268.htm
[133]
王芃芃, 谭支良. 反刍动物瘤胃微生物氨同化作用研究进展. 动物营养学报, 2010, 22(5): 1171-1176. DOI:10.3969/j.issn.1006-267x.2010.05.007
[134]
Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 2010, 74(6): 1145-1151. DOI:10.1271/bbb.100094
[135]
Pernice M, Meibom A, van den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S. A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. The ISME Journal, 2012, 6(7): 1314-1324. DOI:10.1038/ismej.2011.196
[136]
Hongoh Y, Sharma V K, Prakash T, Noda S, Taylor T D, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5555-5560. DOI:10.1073/pnas.0801389105
[137]
Fujita A, Shimizu I, Abe T. Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe):possible digestion of symbiont bacteria transferred by trophallaxis. Physiological Entomology, 2001, 26(2): 116-123. DOI:10.1046/j.1365-3032.2001.00224.x
[138]
Mobley H L, Hausinger R P. Microbial ureases:significance, regulation, and molecular characterization. Microbiological Reviews, 1989, 53(1): 85-108.
[139]
王芃芃, 郑楠, 王加启, 赵圣国. 瘤胃尿素转运与代谢调控研究进展. 中国农业科学, 2015, 48(增刊): 86-93.
[140]
Slaytor M, Chappell D J. Nitrogen metabolism in termites. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1994, 107(1): 1-10.
[141]
Hirayama C, Konno K, Shinbo H. The pathway of ammonia assimilation in the silkworm, Bombyx mori. Journal of Insect Physiology, 1997, 43(10): 959-964. DOI:10.1016/S0022-1910(97)00045-0
[142]
Potrikus C J, Breznak J A. Gut bacteria recycle uric acid nitrogen in termites:a strategy for nutrient conservation. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(7): 4601-4605. DOI:10.1073/pnas.78.7.4601