文章信息
- 祝艳, 王东
- ZHU Yan, WANG Dong
- 蚂蚁觅食与搬运行为对阜平黄堇和小花黄堇种子散布的影响
- Seed dispersal of Corydalis wilfordii and C. racemosa (Papaveraceae):effect of ant foraging and behavior and seed characteristics
- 生态学报, 2014, 34(17): 4938-4942
- Acta Ecologica Sinica, 2014, 34(17): 4938-4942
- http://dx.doi.org/10.5846/stxb201301010005
-
文章历史
- 收稿日期:2013-1-1
- 网络出版日期: 2014-3-5
蚂蚁对植物种子的传播和扩散(即蚂蚁散布或蚁传播 myrmecochory)是自然界普遍存在的互利共生现象之一[1, 2]。在长期的演化过程中,植物为适应蚂蚁散布进化出一系列适应特征[3, 4],如典型蚁播植物的种子上常附着有油质体(elaiosome),油质体吸引蚂蚁取食和搬运种子,而蚂蚁则为植物提供了散布[5, 6, 7]。有研究表明,蚂蚁觅食和搬运行为影响蚂蚁对种子的散布距离[8, 9, 10, 11]、搬运效率[12, 13, 14]以及种子散布后的初始位置[15, 16]。另外也有研究发现种子大小影响蚂蚁散布[17, 18]。显然,蚂蚁和种子特征是影响种子散布的重要因素。
阜平黄堇(Corydalis wilfordii Regel)和小花黄堇 (C. racemosa (Thunb.) Pers.)为罂粟科(Papaveraceae) 紫堇属早春开花植物,其种子上常具有吸引蚂蚁取食和搬运的油质体,是典型的蚁播植物。野外调查发现,阜平黄堇和小花黄堇的居群在大小和植株密度上有所不同,通常阜平黄堇居群较小,植株密度较高,而小花黄堇居群较大,植株密度较低。蚂蚁散布在一定程度上影响了两种植物种子的散布过程,但目前仍不清楚是如何影响的。本文在野外研究了蚂蚁觅食和搬运行为以及种子特征对阜平黄堇和小花黄堇种子散布的影响,以期为探讨蚂蚁对种子散布的影响机制提供资料,也为深入研究蚁播植物种群空间分布格局提供参考。
1 材料与方法 1.1 研究地点和研究材料研究样地位于湖北省咸宁市通山县九宫山自然保护区(东经113°55′,北纬31°49′,海拔415m),地处幕阜山脉中段北坡。该保护区属中亚热带季风气候,以亚热带常绿阔叶林为主,年平均相对湿度为80%—90%,年平均温度为14.4℃,年降水量为1400—2000 mm。在2011年5月初分别选取阜平黄堇和小花黄堇单优群落,并设置调查样方(1 m × 1 m)。阜平黄堇为多年生草本,花果期4—5月底,蒴果线形,长1.5—2 cm,近直或镰形弯曲,约具14粒种子;小花黄堇为一年生草本,花果期4—7月,蒴果线形,长2—4 cm,约具31粒种子。
1.2 研究方法 1.2.1 种子特征用游标卡尺测量10粒新鲜种子的大小(长×宽×厚),求平均值。用分析天平分别测量300粒完整种子重量和去除油质体后的种子重量,求平均值。用油质体重量除以完整种子重量获得油质体质量比。
1.2.2 搬运种子的蚂蚁种类及行为观察在种子释放期间,取10粒新鲜种子放置在植株茎周围1—10 cm范围内,并随时补充种子,记录搬运种子的蚂蚁种类,观察蚂蚁的取食及搬运行为。对相隔2 m以上的5株植物进行重复观察。
1.2.3 搬运效率和搬运距离测量种子搬运效率为蚂蚁在单位时间内搬运种子的数量。在种子释放期间,取研究植物的新鲜种子10粒放置在植株茎周围1—10 cm范围内同一位置处(放置环境与种子掉入土壤中的自然状态一致),记录蚂蚁每小时搬运种子的数量和相应的搬运蚁类,观察蚂蚁的搬运行为,并随时补充种子。观察时间段为8: 00—18: 00,重复观察5个时间段。用跟踪法测量种子的搬运距离,并记录种子被放置的位置。
1.3 数据分析用独立样本t检测(Independent-Samples t test)比较不同种蚂蚁对同种种子以及同种蚂蚁对不同种种子的搬运效率和搬运距离。运用SPSS 17.0软件进行分析,对不满足正态性分布和方差齐性的数据进行转换。
2 结果与分析 2.1 阜平黄堇和小花黄堇种子及油质体特征阜平黄堇和小花黄堇种子大小分别为1.79×1.83×1.17 mm和0.87×0.99×0.55 mm,种子重量分别为(1.73±0.03)mg(mean ± SE,下同)和(0.44±0.02)mg。阜平黄堇油质体质量比为28.3%,小花黄堇油质体质量比为39.6%。
2.2 蚂蚁觅食和搬运行为双针棱胸蚁、束胸平结蚁为阜平黄堇和小花黄堇种子的共同搬运者。双针棱胸蚁发现种子后约召集36头蚂蚁(n=5)列队搬运种子,即行使群体募集方式搬运种子,搬运速度约为5 cm/min。在搬运阜平黄堇种子时,双针棱胸蚁在原地或在搬运途中取食油质体后丢弃种子,或直接将完整种子搬运至蚁巢,常见1头或2头蚂蚁共同搬运1粒种子,在搬运小花黄堇种子时,常见1头蚂蚁搬运1粒种子,并直接将完整种子全部搬运至蚁巢。束胸平结蚁发现种子后约召集4头蚂蚁(n=5)搬运种子,即行使简单协作募集方式搬运种子,在发现阜平黄堇或小花黄堇种子后,常1头蚂蚁搬运1粒种子,并将完整种子直接搬运至蚁巢,搬运速度约为20 cm/min。
2.3 蚂蚁的搬运效率、搬运距离及完整种子到达蚁巢的比例双针棱胸蚁对阜平黄堇和小花黄堇种子的搬运效率分别为(43.8±7.5) 粒/h和(7.3±2.2)粒/h,束胸平结蚁对阜平黄堇和小花黄堇种子的搬运效率分别为(34.2±6.5)粒/h和(10.6±3.2)粒/h,统计分析表明,双针棱胸蚁或束胸平结蚁对两种植物种子的搬运效率差异不显著(P>0.05,表 1),但两种蚂蚁对同种植物种子的搬运效率存在显著差异(P<0.05,表 1)。
蚂蚁种类 Ant species | 搬运效率(每小时搬运种子的数量) Removal rates of seeds (Removal number of seeds/ h) | |
阜平黄堇(C. wilfordii) | 小花黄堇(C. racemosa) | |
表中数据为平均值±标准误,不同字母表示蚂蚁对种子搬运效率的差异水平为P<0.05 | ||
双针棱胸蚁 Pristomyrmex pungens | 43.8±7.5a | 34.2±6.5a |
束胸平结蚁 Prenolepis sphingthorax | 7.3±2.2b | 10.6±3.2b |
双针棱胸蚁搬运小花黄堇和阜平黄堇种子的平均距离分别为(6.27±4.40)m和(1.85 ± 0.24)m,束胸平结蚁搬运小花黄堇和阜平黄堇种子的平均距离分别为(6.65±1.64)m和0.45 m。分析表明,同种蚂蚁对不同种子的搬运距离、不同蚂蚁对相同种子的搬运距离均存在显著性差异(P<0.05,图 1)。
![]() |
图 1 双针棱胸蚁和束胸平结蚁对小花黄堇和阜平黄堇种子的平均搬运距离(平均值±标准误) Fig. 1 Average dispersal distance of seeds of both Corydalis racemosa and C. wilfordii by Pristomyrmex pungens and Prenolepis sphingthorax (Mean±SE) 不同字母表示蚂蚁对种子搬运距离的差异水平为P<0.05 |
在双针棱胸蚁搬运的阜平黄堇种子中,约有44%的种子被搬运至蚁巢,其余的种子或在原地或在搬运过程中被取食油质体后抛弃,束胸平结蚁搬运阜平黄堇时将种子全部搬运至蚁巢;双针棱胸蚁和束胸平结蚁在搬运小花黄堇种子时,均是将全部完整种子直接搬运至蚁巢。
3 讨论与结论蚂蚁是无脊椎动物中重要的种子传播者,蚂蚁的种类、觅食及搬运行为等是影响蚂蚁散布过程的重要因素[9, 10, 11, 12, 13, 14]。有研究表明,行使群体募集的蚂蚁比单独搬运种子的蚂蚁通常有较高的搬运效率[12, 13]。如Hughes等[13]发现蚂蚁在搬运一种豆科植物(Dillwynia juniperina)种子时,行使群体募集搬运种子的蚂蚁比单独搬运种子的蚂蚁有更高的搬运效率。本研究结果也表明,双针棱胸蚁行使群体募集方式搬运种子,而束胸平结蚁行使简单协作方式搬运种子,双针棱胸蚁对阜平黄堇和小花黄堇种子的搬运效率均高于束胸平结蚁。此外,束胸平结蚁搬运阜平黄堇和小花黄堇种子及双针棱胸蚁搬运小花黄堇种子时都为1头蚂蚁搬运1粒种子,而双针棱胸蚁常1—2头共同搬运1粒阜平黄堇种子,显然,蚂蚁在搬运行为上的不同也会影响搬运效率。本研究结果说明不同蚂蚁有不同的觅食策略和搬运行为,这进而会影响蚂蚁对植物种子的散布。
有研究发现,行使群体募集的蚂蚁比单独搬运种子的蚂蚁有较远的搬运距离[10, 11],如Zelikova等[10]对金合欢属一种植物(Acacia collinsii)的研究表明,行使群体募集搬运种子的蚂蚁比单独搬运种子的蚂蚁有较远的种子散布距离。本实验表明,双针棱胸蚁对阜平黄堇种子的搬运距离大于束胸平结蚁,而对小花黄堇种子的搬运距离却小于束胸平结蚁,也即单独搬运种子的束胸平结蚁比行使群体募集搬运种子的双针棱胸蚁有较远的种子散布距离,这与Zelikova等[10]的研究结论不一致,其原因很有可能是阜平黄堇和小花黄堇种子特征不同所引起的。阜平黄堇比小花黄堇种子大,但油质体质量比小。有研究认为蚂蚁搬运的种子越大,其在巢外被捕食的风险越高[13],因此,在蚂蚁将种子搬运到较远距离时,蚂蚁可能会选择搬运相对较小的种子,以减小被捕食的风险,而在种子离蚁巢较近时,蚂蚁可能会选择搬运相对较大的种子。本研究结果说明蚂蚁对种子散布过程的影响不仅取决于相应蚂蚁的种类及其觅食和搬运行为,也与种子特征有关。
蚂蚁散布不但降低了地表种子被捕食的风险[19, 20, 21],而且蚁巢也为种子提供了适宜于萌发及幼苗生长的微环境[22, 23, 24]。因此,蚂蚁搬运种子后放置的位置影响种子萌发和建立幼苗的机会。本研究结果显示,被双针棱胸蚁搬运的小花黄堇种子和阜平黄堇种子到达蚁巢的数量不同,其中小花黄堇种子全部到达蚁巢,而阜平黄堇种子仅部分到达蚁巢。显然,双针棱胸蚁作为小花黄堇和阜平黄堇种子共同的主要搬运者,由于其对两种植物种子取食和搬运行为不同,从而影响了两种植物种子到达蚁巢的比例。另外,双针棱胸蚁和束胸平结蚁对阜平黄堇种子的搬运距离都明显小于对小花黄堇种子的搬运距离,这种差异会造成不同植物种子散布范围的不同,使小花黄堇种子比阜平黄堇种子有相对更大的散布范围。通常种子散布距离越大,其幼苗的生长适合度越高[25, 26]。野外也发现,小花黄堇比阜平黄堇有更大的分布范围,可能与蚂蚁对两种植物种子有不同的搬运行为和搬运距离有关。
研究表明,蚂蚁觅食及其搬运行为和种子特征影响了阜平黄堇和小花黄堇种子散布及种子的早期散布命运,研究结果可为深入研究蚁播植物种群空间分布格局提供参考。
致谢: 西南林业大学徐正会教授帮助鉴定蚂蚁,九宫山森林保护区夏兴旺主任及工作人员对野外工作给予支持,特此致谢。
[1] | Sernander R. Entwurf einer Monographie der europäischen Myrmecochoren. Kungliaga Svenska Vetenskapsakademiens Handlingar, 1906, 41(7): 1-410. |
[2] | Lengyel S, Gove A D, Latimer A M, Majer J D, Dunn R R. Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12(1): 43-55. |
[3] | Nakanishi H. Myrmecochorous adaptations of Corydalis species (Papaveraceae) in southern Japan. Ecological Research, 1994, 9(1): 1-8. |
[4] | Edwards W, Dunlop M, Rodgerson L. The evolution of rewards: seed dispersal, seed size and elaiosome size. Journal of Ecology, 2006, 94(3): 687-694. |
[5] | Giladi I. Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 2006, 112(3): 481-492. |
[6] | Rico-Gray V, Oliveira P S. The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press, 2007. |
[7] | Fischer R C, Richter A, Hadacek F, Mayer V. Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants. Oecologia, 2008, 155(3): 539-547. |
[8] | Chen F, Chen J, Liu Z Q, Zhang L, Liu Y, Bai Z L. The role of ants in seed dispersal of Globba lancangensis and the spatial distribution of its seedlings. Acta Phytoecologica Sinica, 2004, 28(2): 210-217. |
[9] | Gorb S N, Gorb E V. Dropping rates of elaiosome-bearing seeds during transport by ants (Formica polyctena Forest.): implications for distance dispersal. Acta Oecologica, 1999, 20(5): 509-518. |
[10] | Zelikova T J, Breed M D. Effects of habitat disturbance on ant community composition and seed dispersal by ants in a tropical dry forest in Costa Rica. Journal of Tropical Ecology, 2008, 24(3): 309-316. |
[11] | Gomez C, Espadaler X. Seed dispersal curve of a Mediterranean myrmecochore: influence of ant size and the distance to nests. Ecological Research, 1998, 13(3): 347-354. |
[12] | Gorb S N, Gorb E V. Effects of ant species composition on seed removal in deciduous forest in Eastern Europe. Oikos, 1999, 84(1): 110-118. |
[13] | Hughes L, Westoby M. Effect of diaspore characteristics on removal of seeds adapted for dispersal by ant. Ecology, 1992, 73(4): 1300-1312. |
[14] | Zhang Z Y, Cao M, Yang X D, Zhao Z M. Codariocalyx motorius seed removed by ants in Xishuangbanna. Acta Ecologica Sinica, 2001, 21(11): 1847-1853. |
[15] | Wei M S, Chen Z H, Ren H, Zou F S, Yin Z Y. Seed dispersal of the pioneer shrub Rhodomyrtus tomentosa by frugivorous birds and ants. Biodiversity Science, 2004, 12(5): 494-500. |
[16] | Bas J M, Oliveras J, Gómez C. Myrmecochory and short-term seed fate in Rhamnus alaternus : ant species and seed characteristics. Acta Oecologica, 2009, 35(3): 380-384. |
[17] | Gorb S, Gorb E. Removal rates of seeds of five myrmecochorous plants by the ants Formica polyctena (Hymenoptera: Formicidae). Oikos, 1995, 73(3): 367-374. |
[18] | Gorb E, Gorb S. Effects of seed aggregation on the removal rates of elaiosome-bearing Chelidonium majus and Viola odourata seeds carried by Formica polyctena ants. Ecological Research, 2000, 15(2): 187-192. |
[19] | Culver D C, Beattie A J. Myrmecochory in Viola : dynamics of seed-ant interactions in some West Virginia species. Journal of Ecology, 1978, 66(1): 53-72. |
[20] | Heithaus E R. Seed predation by rodents on three ant-dispersed plants. Ecology, 1981, 62(1): 136-145. |
[21] | Ohkawara K, Ohara M, Higashi S. The evolution of ant-dispersal in a spring-ephemeral Corydalis ambigua (Papaveraceae): timing of seed-fall and effects of ants and ground beetles. Ecography, 1997, 20(3): 217-223. |
[22] | Beattie A J, Culver D C. The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 1981, 62(1): 107-115. |
[23] | Beattie A J. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press, 1985. |
[24] | Manzaneda A J, Fedriani J M, Rey P J. Adaptive advantages of myrmecochory: the predator-avoidance hypothesis tested over a wide geographic range. Ecography, 2005, 28(5): 583-592. |
[25] | Andersen A N. Dispersal distance as a benefit of myrmecochory. Oecologia, 1988, 75(4): 507-511. |
[26] | Boyd R S. Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). American Journal of Botany, 2001, 88(2): 234-241. |
[8] | 陈帆, 陈进, 刘志秋, 张玲, 刘勇, 白智林. 蚂蚁对澜沧舞花姜种子散布及种苗空间分布格局的影响. 植物生态学报, 2004, 28(2): 210-217. |
[14] | 张智英, 曹敏, 杨效东, 赵志模. 舞草种子的蚂蚁传播. 生态学报, 2001, 21(11): 1847-1853. |
[15] | 韦明思, 陈章和, 任海, 邹发生, 殷祚云. 鸟类和蚂蚁对桃金娘种子传播的初步研究. 生物多样性, 2004, 12(5): 494-500. |