文章信息
- 刘华雪, 柯常亮, 李纯厚, 廖秀丽, 黄洪辉
- LIU Huaxue, KE Changliang, LI Chunhou, LIAO Xiuli, HUANG Honghui
- 南海南部悬浮颗粒物脂肪酸组成
- Composition of fatty acids from suspended particulate matter in southern South China Sea
- 生态学报, 2014, 34(10): 2599-2607
- Acta Ecologica Sinica, 2014, 34(10): 2599-2607
- http://dx.doi.org/10.5846/stxb201212231849
-
文章历史
- 收稿日期:2012-12-23
- 网络出版日期:2014-2-20
2. 中国科学院热带海洋生物资源与生态重点实验室, 中国科学院南海海洋研究所, 广州 510301
2. Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
生物体对食物的吸收过程中,食物中的脂肪酸(FA)被相对保守地同化至消费者体内,因此脂肪酸能反映最近一段时期内生物的摄食情况[ 1 ]。浮游植物的脂肪酸组成不仅能反映浮游植物群落结构的变化,还可以揭示浮游动物的摄食策略,表达海洋食物链的传输路径和海洋生物生活史策略[ 2,3 ]。海洋生态系统的悬浮颗粒物(SPM)包括无机颗粒和有机颗粒(原生动物、碎屑和浮游植物),其中有机颗粒是海洋生态系统中的主要初级食物源[ 4,5 ],对其脂肪酸组成和时空变化的分析可以加深对海洋食物网动力学的认知[ 6,7,8 ]。国外关于海洋SPM脂肪酸的组成和动态变化在Conception 湾[ 9,10 ]、北海[ 11 ]、Alboran Sea[ 12 ]等不同海域[ 13 ]已经进行了一些研究[ 9,10,11,12,13 ]。国内学者对脂肪酸标记物的研究主要集中在浮游植物和浮游动物的脂肪酸组成[ 14,15,16 ]和室内投喂实验[ 17 ],而对悬浮颗粒物脂肪酸组成的研究较少[ 18 ]。
南海是我国四大海中最大的一个近似封闭的海域,也是西北太平洋最大的边缘海,具有复杂的物理和生态过程[ 19,20,21 ]。国内外学者对该南海的研究兴趣渐次浓厚,但关于南海SPM中FA组成的研究尚无公开报道。本文根据2012年中国水产科学研究院南海水产研究所春季航次的现场采样,对不同水层SPM的FA进行了研究,探讨FA组成和分布特征及脂肪酸标记物,研究结果可填补南海这一研究空白,并为南海生态系统的研究提供基础资料。
1 材料和方法 1.1 研究海区和采样站位2012年2月22日至3月20日,使用“南锋”科学考察船对南海南部海域进行现场调查,共设置站位9个(图1)[ 22 ]。
1.2 样品采集与分析使用温盐深仪(CTD,Seabird)采集0、75、150 m层的水样,用 200 μm 的筛绢除去粒径大于此的浮游动物和颗粒物。本文将叶绿素a(Chl a)实测结果与荧光数据校正,以校正后的荧光数据作为Chl a浓度。2L脂肪酸水样用在马弗炉中 450℃下灼烧4 h左右的玻璃纤维膜(0.7 μm)收集颗粒物,收集的样品膜置于同样条件灼烧过的锡纸中密封后保存在-20℃ 冰箱中。所有不能灼烧的采样器具均用稀盐酸润洗。
样品经过二氯甲烷∶甲醇(2∶1)提取总脂后加入1 mL 0.5 mol/L KOH 甲醇溶液于80℃水浴中皂化,再加入1 mL BF3 甲醇溶液在80℃水浴中甲酯化反应1 h。脂肪酸甲酯经正己烷萃取后上机测定,其中甲醇、二氯甲烷和正己烷均为色谱纯,BF3甲醇溶液、脂肪酸甲酯标样(37种混标及C19:0)均为Sigma公司生产[ 12 ]。脂肪酸甲酯用Agilent 7890A-5975C气质联用仪(GC/MS)进行分析,分离用毛细管柱规格为 30 m×0.249 mm×0.25 μm。
色谱条件为:柱温采用程序升温,进样口温度为 270 ℃,检测器温度为320 ℃,质谱传输线温度250 ℃;载气为高纯氦气,流速为 1.0 mL/min;进样采用自动进样,进样体积为 1 μL,不分流。质谱条件为:离子源温度 250 ℃,以 EI 方式电离,电离电压为70 EV,检测采用全扫描方式,扫描范围为50—600。
用各种单一脂肪酸甲酯标准品在相同气质条件下的保留时间及NIST谱库来进行定性,定量采用内标标准工作曲线法。本文用X:YnZ形式来表示脂肪酸的基本命名,其中X表示碳链的长度,Y表示双键的数目,nZ表示从甲基末端计第一个双键所在的位置[ 18 ]。用SPSS16.0软件对各水层SPM中脂肪酸含量进行主成分分析(PCA),并对脂肪酸标记物进行Pearson相关性分析。
2 结果 2.1 脂肪酸组成按步骤进行实验,37种脂肪酸甲酯混合标样的GC/MS总离子流图如图2和表1所示。南海南部海域SPM中FA以饱和脂肪酸(SFA)和单不饱和脂肪酸(MUFA)为主,而多不饱和脂肪酸(PUFA)含量较低(表2)。SFA主要包括C16:0和C18:0,其次是C12:0,MUFA主要是C14:1n3、C16:1n7和C16:1n9,PUFA主要是C18:2n6和C22:2n6。
![]() |
图 2 37种脂肪酸甲酯标准品的总离子流图 Fig. 2 TIC chromatogram of methyl esters of fatty acids in 37 mix |
序号 No. | 名称 Name | 序号 No. | 名称 Name | 序号 No. | 名称 Name | 序号 No. | 名称 Name |
1 | C6:0 | 10 | C15:0 | 19 | C18:1 | 28 | C21:0 |
2 | C8:0 | 11 | C16:1 | 20 | C18:0 | 29 | C22:6 |
3 | C10:0 | 12 | C16:0 | 21 | C20:4 | 30 | C22:2 |
4 | C11:0 | 13 | C17:1 | 22 | C20:5 | 31 | C22:1 |
5 | C12:0 | 14 | C17:0 | 23 | C20:3 | 32 | C22:0 |
6 | C13:0 | 15 | C18:3 | 24 | C20:2 | 33 | C23:0 |
7 | C14:1 | 16 | C18:3 | 25 | C20:1 | 34 | C24:1 |
8 | C14:0 | 17 | C18:2 | 26 | C20:3 | 35 | C24:0 |
9 | C15:1 | 18 | C18:2 | 27 | C20:0 |
|
|
|
C8:0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
C10:0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | |
C11:0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 |
C12:0 | 3.5 | 2.6 | 3.0 | 3.8 | 4.0 | 6.2 | 0 | 0 | 5.8 | 0 | 2.3 | 1.6 | 0 | 0 | 4.1 | 5.0 | 0 | 0 | 2.1 | 2.8 | 2.9 | 0 | 5.7 | 3.5 | 11.6 | 4.6 | 0 |
C13:0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | A6 |
C14:0 | 0.4 | 0.7 | 0.5 | 0.9 | 0.4 | 0.3 | 0.4 | 0.8 | 1.0 | 1.5 | 0.9 | 0.8 | 0.9 | 0.7 | 0.4 | 0.6 | 0.5 | 0.4 | 1.0 | 0.8 | 0.5 | 0.9 | 0.5 | 0.5 | 0.9 | 0.5 | 0.5 |
C15:0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 |
C16:0 | 17.8 | 25.1 | 20.7 | 30.5 | 17.5 | 21.9 | 28.6 | 25.2 | 25.2 | 33.5 | 23.8 | 28.0 | 19.0 | 23.9 | 20.7 | 24.3 | 18.7 | 25.0 | 31.1 | 20.7 | 20.6 | 35.0 | 17.6 | 18.6 | 22.2 | 19.3 | 19.4 |
C17:0 | 0.4 | 0.4 | 0.5 | 0.5 | 0.0 | 0.3 | 0.4 | 0.4 | 0.6 | 0.4 | 0.0 | 0.4 | 0.4 | 0.3 | 0 | 0.3 | 0.5 | 0.4 | 0.3 | 0.4 | 0 | 0.4 | 0.5 | 0 | 0.6 | 0 | 0.5 |
C18:0 | 22.9 | 24.3 | 27.3 | 41.8 | 22.9 | 29.0 | 37.7 | 32.7 | 33.9 | 30.8 | 22.0 | 33.3 | 24.8 | 31.8 | 26.8 | 33.0 | 23.9 | 34.0 | 30.4 | 26.8 | 27.8 | 47.9 | 22.8 | 25.1 | 28.6 | 25.9 | 27.3 |
C20:0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0.3 | 0.4 | 0.0 | 0.4 | 0 | 0.3 | 0 | 0.3 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 |
C14:1n3 | 40.3 | 33.0 | 36.9 | 8.9 | 35.9 | 28.1 | 25.0 | 29.1 | 25.2 | 24.4 | 36.0 | 26.8 | 39.8 | 30.4 | 35.4 | 26.3 | 37.3 | 32.4 | 24.8 | 37.4 | 37.3 | 6.8 | 38.3 | 42.2 | 23.7 | 36.5 | 40.7 |
C15:1n5 | 3.5 | 2.2 | 1.0 | 0.5 | 2.7 | 4.6 | 0.4 | 0.8 | 2.6 | 1.5 | 2.3 | 0.4 | 0.4 | 2.4 | 0.8 | 2.0 | 2.9 | 0.8 | 1.7 | 2.8 | 0.5 | 1.3 | 2.6 | 1.5 | 1.5 | 1.0 | 0.9 |
C16:1n7 | 5.0 | 4.9 | 5.6 | 4.7 | 4.9 | 4.3 | 2.5 | 2.4 | 2.2 | 3.0 | 4.7 | 3.3 | 4.9 | 3.8 | 3.7 | 3.5 | 5.7 | 3.7 | 3.8 | 4.1 | 4.3 | 3.8 | 4.7 | 4.5 | 2.7 | 5.6 | 4.6 |
C17:1n7 | 0.4 | 1.5 | 1.0 | 2.3 | 3.6 | 0.3 | 0.7 | 3.1 | 0.6 | 2.3 | 3.3 | 1.2 | 3.5 | 1.7 | 1.2 | 1.2 | 4.3 | 0.8 | 1.0 | 2.0 | 2.9 | 0.9 | 1.6 | 0.5 | 1.8 | 0 | 1.4 |
C18:1n9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C18:1n7 | 3.5 | 3.4 | 0 | 3.8 | 4.5 | 2.8 | 2.2 | 2.0 | 1.6 | 0.4 | 1.4 | 1.6 | 0.4 | 2.8 | 2.4 | 1.2 | 1.4 | 0.4 | 0.3 | 0.4 | 1.0 | 0.4 | 1.0 | 0.5 | 3.6 | 3.0 | 2.3 |
C22:1n9 | 0 | 0 | 0.5 | 0.5 | 0.4 | 0.3 | 0 | 1.2 | 0 | 0.4 | 0.5 | 0.4 | 0 | 0.7 | 0.4 | 0.3 | 0.0 | 0.4 | 0.3 | 0.4 | 0.5 | 0.4 | 0.5 | 0 | 0.3 | 1.0 | 0 |
C24:1n9 | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.3 | 0.4 | 0 | 0.3 | 0.4 | 0.5 | 0 | 1.3 | 0.3 | 0.8 | 0.0 | 1.0 | 0.4 | 0.3 | 0.8 | 0.5 | 0.9 | 1.0 | 1.5 | 0 | 1.0 | 0.9 |
C18:3n3 | 0.4 | 0 | 0.5 | 0.5 | 0.4 | 0.3 | 0.4 | 0 | 0 | 0 | 0 | 0 | 1.3 | 0.0 | 0.4 | 0.3 | 1.0 | 0 | 0.3 | 0 | 0.0 | 0.4 | 0.5 | 0.0 | 0.3 | 0.5 | 0 |
C18:2n6 | 1.2 | 0.4 | 0.5 | 0.0 | 0.4 | 0.3 | 0.4 | 0.4 | 0 | 0.4 | 0.5 | 0.4 | 1.3 | 0.0 | 0.8 | 0.3 | 0.5 | 0 | 0.7 | 0 | 0.5 | 0 | 1.0 | 0.5 | 0.3 | 0.5 | 0 |
C20:4n6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C20:3n6 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C20:2n6 | 0 | 0.4 | 1.0 | 0.5 | 0.4 | 0.3 | 0 | 0.4 | 0.3 | 0.4 | 0.9 | 0.4 | 0.9 | 0.7 | 0.8 | 0.3 | 1.0 | 0.4 | 0.7 | 0 | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0 | 0.5 |
C22:2n6 | 0 | 0.4 | 0.5 | 0.5 | 0.9 | 0.3 | 0.4 | 1.2 | 0.3 | 0.4 | 0.5 | 0.4 | 0.9 | 0.0 | 0.8 | 0.3 | 0.5 | 0.8 | 0.3 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 | 0.3 | 0.5 | 0.9 |
各水层中不同FA所占比例如图3所示,各水层中SFA和MUFA的占比变化较大,PUFA占比一直低于5%。SFA比例在150 m层最高,其次是表层,在75 m层最低,但一直高于40%。MUFA的占比在75 m层最高,其次是表层,在150 m层最低,但绝大多数站位低于SFA含量。相关性分析显示,表层Chl a含量与大多SFA(如C14:0、C16:0、C17:0、C18:0和C20:0)呈正相关,而与部分不饱和脂肪酸(如C16:1n9和C18:3n3)呈负相关。此外,C18:2n6与C14:0、C16:0、C18:0负相关。在75 m层,C16:0含量与C18:0、C20:0、C22:1n9含量呈正相关,而与C24:1n9、C18:3n3、C20:2n6含量呈负相关。在150m层,C12:0、C14:0、C16:0、C17:0、C14:1n3、C18:2n6含量与C24:1n9含量呈负相关。
![]() |
图 3 各水层悬浮颗粒物脂肪酸组成的比例 Fig. 3 The percentage of each FA content to total FA contents |
不同水层中悬浮颗粒物的FA含量的垂向变化不大(图4),没有像Chl a那样在次表层出现极大值。FA/Chl a的比值垂向变化非常大,在表层和150 m层都大于70,而在75 m层,除了A7其余站位都小于30。FA含量在表层、75 m层和150 m层的变化范围分别为9.9—15.65 μg/L,10.45—14.45 μg/L和9.65—16.45 μg/L。表层的FA高值出现在A6和A9,而在75 m层和150 m层出现在A8。
![]() |
图 4 悬浮颗粒物中脂肪酸含量及脂肪酸含量/叶绿素a的比值 Fig. 4 FA content of SPM and the ratio of FA/Chl a |
对各水层悬浮颗粒物中脂肪酸实际含量进行了主成分分析(图5)。表层和150 m层中,A4显著区别于其他站位,该站的C18:0偏高,C14:1n3偏低。表层C14:0、C16:0、C17:0和C18:0较为接近,而C15:1n5和C24:1n9较类似。在75 m层,C16:0、C20:0和C22:1n9较接近,C18:3n3和C20:2n6较接近。在150m层,C16:0、C20:0和C14:0生态特征较为类似。在表层,PC1与C17:1n7呈负相关,PC2与C14:0、C16:0和C18:0呈负相关;在75 m层,PC1与C22:1n9正相关,与C24:1n9、C18:3n3、C18:2n6、C20:2n6负相关,而PC2与部分MUFA(C14:1n3、C15:1n5、C16:1n7、C18:1n9)正相关;在150 m层,PC1与C18:1n7、C20:2n6正相关,与C24:1n9负相关;PC2与C14:1n3、C16:1n7、C17:1n7、C20:2n6正相关,与C18:3n3负相关。PC1主要表征的可能是浮游植物和水体中的碎屑。PC2在不同水层与FA呈现的相关性不同,且与不饱和脂肪酸有较大联系,所表征的信息可能与浮游动物等有关。
![]() |
图 5 各水层SPM脂肪酸组成主成分分析图 Fig. 5 Score plots for the first two PCs for the 24 FAs at each layer |
∑C16/∑FA、C16:1n7/∑FA、∑C16/∑C18和C16:1/C16:0是常见的硅藻标志物[ 16,17,18 ],而∑C18/∑FA是常见的甲藻标志物[ 14 ]。本文对5种常见脂肪酸标记物的结果进行了整理(表3),各种标志物的垂向变化不大。∑C16/∑FA比值在不同水层的均值分别是0.23—0.24,变化较小。C16:1n7/∑FA比值在各层的均值都是0.04,且均小于0.1。∑C16/∑C18比值在不同水层均值分别是0.82—0.90,绝大多数情况下比值小于1。C16:1/C16:0比值在表层和75m都是0.17,高于150 m的均值(0.13)。∑C18/∑FA比值在表层和75 m是0.34,略高于150 m层(0.31)。各水层SPM脂肪酸标记物之间的相关性如表4所示,其中C16:1/C16:0与∑C18/∑FA和∑C16/∑FA呈负相关,与C16:1n7/∑FA正相关。
脂肪酸标记物 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
∑C16/∑FA | 0 m | 0.18 | 0.25 | 0.21 | 0.31 | 0.17 | 0.22 | 0.29 | 0.25 | 0.25 |
75 m | 0.33 | 0.24 | 0.28 | 0.19 | 0.24 | 0.21 | 0.24 | 0.19 | 0.25 | |
150 m | 0.31 | 0.21 | 0.21 | 0.35 | 0.18 | 0.19 | 0.22 | 0.19 | 0.19 | |
C16:1n7/∑FA | 0 m | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 |
75 m | 0.03 | 0.05 | 0.03 | 0.05 | 0.04 | 0.04 | 0.04 | 0.06 | 0.04 | |
150 m | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.06 | 0.05 | |
∑C16/∑C18 | 0 m | 0.82 | 1.07 | 0.93 | 0.77 | 0.79 | 0.81 | 0.77 | 0.79 | 0.77 |
75 m | 1.15 | 1.20 | 0.89 | 0.86 | 0.80 | 0.80 | 0.79 | 0.91 | 0.83 | |
150 m | 1.10 | 0.91 | 0.85 | 0.80 | 0.88 | 0.88 | 0.76 | 0.83 | 0.81 | |
C16:1/C16:0 | 0m | 0.28 | 0.19 | 0.27 | 0.15 | 0.28 | 0.20 | 0.09 | 0.09 | 0.09 |
75m | 0.09 | 0.20 | 0.12 | 0.26 | 0.16 | 0.18 | 0.14 | 0.31 | 0.15 | |
150m | 0.12 | 0.20 | 0.21 | 0.11 | 0.26 | 0.24 | 0.12 | 0.29 | 0.24 | |
∑C18/∑FA | 0 m | 0.28 | 0.28 | 0.28 | 0.46 | 0.28 | 0.32 | 0.41 | 0.35 | 0.35 |
75 m | 0.31 | 0.24 | 0.35 | 0.28 | 0.35 | 0.30 | 0.35 | 0.27 | 0.34 | |
150 m | 0.32 | 0.27 | 0.29 | 0.49 | 0.25 | 0.26 | 0.33 | 0.30 | 0.30 |
|
∑C16/∑FA | 0.87** | |||
C16:1n7/∑FA | -0.47 | -0.50 | ||
∑C16/∑C18 | -0.56 | -0.13 | 0.50 | |
C16:1/C16:0 | -0.70* | -0.82** | 0.90** | 0.33 |
|
∑C16/∑FA | 0.44 | |||
C16:1n7/∑FA | -0.75** | -0.78** | ||
∑C16/∑C18 | -0.58 | 0.46 | 0.06 | |
C16:1/C16:0 | -0.69* | -0.87** | 0.97** | -0.11 |
|
∑C16/∑FA | 0.86** | |||
C16:1n7/∑FA | -0.35 | -0.43 | ||
∑C16/∑C18 | -0.24 | 0.28 | 0.04 | |
C16:1/C16:0 | -0.67* | -0.82** | 0.87** | -0.16 |
显著程度: *(P<0.05); **(P<0.01) |
南海具有典型的贫营养特征,随着水深的增加,在真光层内的光照和温度降低,营养盐浓度升高,而Chl a浓度先升高再降低[ 19, 21 ]。南海南部SPM脂肪酸含量的垂向变化较小,可能与浮游植物种类组成和生物量的变化有关,这是因为浮游植物种类在表层,DCM层和真光层底部存在较大差异[ 23 ]。此外,环境因素(光照、温度、营养盐)[ 24 ]、真光层内的浮游动物摄食和碎屑沉降也与SPM脂肪酸含量可能有密切关系。
不同藻类所含的脂肪酸组成不同,水体中脂肪酸的分布特征取决于浮游植物的群落结构,因此一些不常见的脂肪酸,典型的脂肪酸和一些脂肪酸的比率都可用做化学分类标志物[ 18 ]。Jeffries[ 4 ]对美国罗得岛东部的Narragansett湾浮游植物群落的研究发现,随着湾中浮游植物群落优势种群由硅藻逐渐演替到甲藻,水体SPM脂肪酸组成中C16:1/C16:0比值由大于2逐渐降低到小于0.3,而C18:4/C18:1比值的变化趋势则与其相反,呈逐渐升高的趋势。该研究的结果表明以上两种脂肪酸含量比值可以对水体浮游植物群落组成特征起到示踪作用。饱和脂肪酸如 C14:0、C16:0 及 C18:0 等因为可以在多种生物中合成且含量水平存在差异,所以很少能作为生化指示物来进行种类分析[ 25,26,27,28 ]。本研究中这几种SFA与Chl a具有显著的相关性,说明浮游植物生物量和SFA含量有较紧密的关系,可用来表示水体中浮游植物和碎屑的含量。此外,部分不饱和脂肪酸浓度与Chl a浓度负相关,这可能是与浮游动物碎屑有关。
很少有某种脂肪酸是某一物种所特有,也就是说没有哪种单一脂肪酸可以用来指示某一物种[ 28,29 ]。而利用两种或多种脂肪酸的组合作为指示物在种类分析中更加有效[ 3, 30 ]。一般来讲指示硅藻的较普遍组合是 C16:1n7/C16:0[ 31,32,33 ],当 16:1n7/16:0≥1 时,表明硅藻占优势[ 25,26 ]。Pond等[ 34 ]采用浅海中型围隔实验研究了水体中的浮游植物群落变化及脂肪酸组成特征,验证了∑C16PUFA+C20:5n3(EPA)对硅藻类的指示作用。另外一些组合如 ∑C16/∑C18等也常常用来指示硅藻的组成[ 35,36,37 ]。甲藻的种类较多,脂肪酸组成变动较大,但 C18 系列脂肪酸是这个种类所共有的主要脂肪酸,高的 ∑C18PUFA/∑FA 比值是甲藻的特征[ 30, 38 ],另外也多用 C22:6n3/C20:5n3(DHA/EPA)指示甲藻组成,当 DHA/EPA≥1 时,表明甲藻占优势,当该值﹤1 时,认为硅藻占优势[ 35 ]。
通过统计手段初步确定了适宜于本海域SPM的特征脂肪酸组合。C16:1n7/C16:0和∑C16:1/∑FA之间的相关性较好,同时C16:1n7/C16:0与甲藻指示组合呈显著负相关,所以认为C16:1n7/C16:0和C16:1/∑FA更适宜用来指示硅藻的组成,而∑C18/∑FA可以较好的指示甲藻组成。在表层,C16:1n7/∑FA和C16:1/C16:0均表现在A1—A6站位较高,A7—A9站位较低,可能显示了硅藻空间分布的变化。大多数情况下,∑C16/∑C18的比值小于1,说明甲藻在南海南部海域可能比例更大些。
致谢: “南锋”号科考船工作人员在采样过程中提供帮助,特此致谢。
[1] | Napolitano G E. Fatty acids as trophic and chemical markers in freshwater ecosystems//Arts M T, Wainman B C, eds. Lipids in Freshwater Ecosystems. New York: Springer, 1999. |
[2] | Conte M H, Volkman J K, Eglinton G. Lipid biomarkers of the Haptophyta//Green J C, Leadbeater B S C, eds. The Haptophyte Algae. Oxford: Clarendon Press, 1994: 351-377. |
[3] | Dalsgaard J, John M S, Kattner G, Müller-Navarra D C, Hagen W. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 2003, 46: 225-340. |
[4] | Jeffries H P. Seasonal composition of temperate plankton communities-fatty acids. Limnology and Oceanography, 1970, 15(3): 419-426. |
[5] | Wakeham S G, Beier J A. Fatty acid and sterol biomarkers as indicators of particulate matter source and alteration processes in the Black Sea. Deep-Sea Research, 1991, 38(S2): S943-S968. |
[6] | Kaitaranta J K, Linko R R, Vuorela R. Lipids and Fatty acids in plankton from the Finnish coastal waters of the Baltic Sea. Comparative Biochemistry and Physiology B, 1986, 85(2): 427-433. |
[7] | Miyazaki T. Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Archiv für Hydrobiologie, 1983, 99(1): 1-14. |
[8] | Parrish C C. Dissolved and particulate marine lipid classes: a review. Marine Chemistry, 1988, 23(1/2): 17-40. |
[9] | Parrish C C, Thompson R J, Deibel D. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Marine Ecology Progress Series, 2005, 286: 57-68 |
[10] | Parrish C C, Deibel D, Thompson R J. Effect of sinking spring phytoplankton blooms on lipid content and composition in suprabenthic and benthic invertebrates in a cold ocean coastal environment. Marine Ecology Progress Series, 2009, 391: 33-51. |
[11] | Kattner G, Gercken G, Eberlein K. Development of lipids during a spring plankton bloom in the northern North Sea. I. Particulate fatty acids. Marine Chemistry, 1983, 14(2): 149-162. |
[12] | Tolosa I, Vescovali I, Leblond N, Marty J C, Mora S, Prieur E. Distribution of pigments and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine Chemistry, 2004, 88(1/4): 103-125. |
[13] | Mayzaud P, Claustre H, Augier P. Effect of variable nutrient supply on fatty acid composition of phytoplankton grown in an enclosed experimental ecosystem. Marine Ecology Progress Series, 1990, 60: 123-140. |
[14] | Xu Q, Yang H S. Fatty acid biomarker and its application in marine trophic relation studies. Acta Oceanologica Sinica, 2011, 33(1): 1-6. |
[15] | Wang N. Application of Fatty Acids Biomarker in Marine Food Web Research: A Case in the Yangtze River Estuary Sea Area [D]. Shanghai: East China Normal University, 2008. |
[16] | Liang Y. Study on Fatty Acids Composition of Marine Diatoms [D]. Qingdao: Ocean University of China, 2004. |
[17] | Liu M T, Li C L, Sun S. Identification of trophic relationships between marine algae and the copepod Calanus sinicus in a fatty acid approach. Acta Ecologica Sinica, 2011, 31(4): 933-942. |
[18] | Lü S G. Distribution of Fatty Acids and Their Effect on the Trophic Relationship between Primary Producers and the Zooplankton Consumers in Jiaozhou Bay, Northern China [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2007. |
[19] | Chen Y L L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Research I, 2005, 52(7): 319-340. |
[20] | Su J L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 2004, 24(16): 1745-1760. |
[21] | Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 2004, 109(C10): C10005, doi: 10.1029/2004JC002365. |
[22] | Liu H X, Li G, Tan Y H, Ke Z X, Huang J R, Huang L M. Latitudinal changes (6°S-20°N) of summer ciliate abundance and species compositions in surface waters from the Java Sea to the South China Sea. Acta Oceanologica Sinica, 2013, 32 (4): 66-70. |
[23] | Ke Z X, Huang L M, Tan Y H, Yin J Q. Species composition and abundance of phytoplankton in the northern South China Sea in summer 2007. Journal of Tropical Oceanography, 2011, 30(1): 131-143. |
[24] | Zhang Y J, Pan J F, Pu X M. Fatty acids of marine phytoplankton: composition, physiological functions and ecological significances. Marine Science Bulletin, 2011, 30(1): 113-120. |
[25] | Napolitano G E, Ackman R G. Anatomical distributions and temporal variations of lipid classes in scallops Placopecten magellanicus (Gmelin) from Georges Bank (Nova Scotia). Comparative Biochemistry and Physiology B, 1992, 103(3): 645-650. |
[26] | Napolitano G E, Ackman R G, Ratnayake W M N. Fatty acid composition of three cultured algal species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros, Calcitrans) used as food for bivalve larve. Journal of the World Aquaculture Society, 1990, 21(2): 122-130. |
[27] | Napolitano G E, Pollero R J, Gayoso A M, MacDonald B A, Thompson R J. Fatty acids as trophic markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology, 1997, 25(8): 739-755. |
[28] | Reuss N, Poulsen L K. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom off West Greenland. Marine Biology, 2002, 141(3): 423-434. |
[29] | Sargent J R, Parkes R J, Mueller-Harvey I, Henderson R J. Lipid biomarkers in marine ecology//Sleigh M A, ed. Microbes in the sea, 1988: 119-138. |
[30] | Viso A C, Marty J C. Fatty acids from 28 marine microalgae. Phytochemistry, 1993, 34(6): 1521-l 533. |
[31] | Léveillé J C, Amblard C, Bourdier G. Fatty acids as specific algal markers in a natural lacustrian phytoplankton. Journal of Plankton Research, 1997, 19(4): 469-490. |
[32] | Chu F L E, Lund E D, Podbesek J A. Quantitative significance of n-3 essential fatty acid contribution by heterotrophic protists in marine pelagic food webs. Marine Ecology Progress Series, 2008, 354: 85-95 |
[33] | Dunstan G A, Volkman J K, Barrett S M, Leroi J M, Jeffrey S W. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry, 1994, 35(1): 155-161. |
[34] | Pond D W, Bell M V, Harris R P, Sargent J R. Microplanktonic polyunsaturated fatty acid biomarkers: a biomesocosm trial. Estuarine, Coastal and Shelf Science, 1998, 46(2): 61-67. |
[35] | Budge S M, Parrish C C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochemistry, 1998, 29(5/7): 1547-1559. |
[36] | Budge S M, Parrish C C, Mckenzie C H. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry, 2001, 76(4): 285-303. |
[37] | Claustre H, Marty J C, Cassiani L, Dagaut J. Fatty acid dynamics in phytoplankton and microzooplankton communities during a spring bloom in the coastal Ligurian Sea: Ecological implications. Marine Microbial Food Webs, 1988, 3: 51-66. |
[38] | Nichols P D, Jones G J, de Leeuw J W, Johns R B. The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry, 1984, 23(5): 1043-1047. |
[14] | 许强, 杨红生. 脂肪酸标志物在海洋生态系统营养关系研究中的应用. 海洋学报, 2011, 31(1): 1-6. |
[15] | 王娜. 脂肪酸等生物标志物在海洋食物网研究中的应用——以长江口毗邻海域为例 [D]. 上海: 华东师范大学, 2008. |
[16] | 梁英. 海洋硅藻脂肪酸组成的研究 [D]. 青岛: 中国海洋大学, 2004. |
[17] | 刘梦坛, 李超伦, 孙松. 脂肪酸对中华哲水蚤摄食两种海洋微藻的指示作用. 生态学报, 2011, 31(4): 933-942. |
[18] | 吕淑果. 胶州湾悬浮颗粒物中脂肪酸的时空分布及其在初级生产者到初级消费者食物传递中的作用. 青岛: 中国科学院海洋研究所, 2007. |
[23] | 柯志新, 黄良民, 谭烨辉, 尹健强. 2007 年夏季南海北部浮游植物的物种组成及丰度分布. 热带海洋学报, 2011, 30(1): 131-143. |
[24] | 张玉君, 潘进芬, 蒲新明. 海洋浮游植物的脂肪酸: 组成、功能及其生态学意义. 海洋通报, 2011, 30(1): 113-120. |