Abstract:Litter production and its composition in temperate forests show seasonal dynamics due to changes in the ecosystem structure and environment, which directly affect the nutrient cycling and ecological services in the ecosystems. In this study, we investigated seasonal dynamics in the litter production and its composition for six forest types in Maoershan region for six continuous years in order to reveal the factors driving the inter- and intra-annual variability of the litter production. The results showed that annual litterfall (t/hm2) decreased in the order of:Quercus mongolica stand (4.60) > mixed deciduous stand (4.21) > hardwood stand (4.03) > Pinus koraiensis plantation (3.95) > Populus-Betula stand (3.89) > Larix gmelinii plantation (3.85). There was a significant difference in total litterfall among the six stands. The litter production fluctuated interannually and showed an overall increasing tendency. The interannual variation in the litter composition depended upon its compoents:the litter production of woody tissues was relatively stable; that of foliages was consistent with the total litter production; and that of reproductive tissues and others increased with stand age. The production of total litter showed a mono-peak seasonal pattern for all the stands, and the occurrence of the peak varied with forest type. The litter production of woody tissues displayed a bimodal seasonal course; that of foliages was a mono-peak curve; and that of reproductive tissues and others was relatively stable intra-annually. Total rainfall significantly influenced the inter-annual litter production (P < 0.05), and explained 90% and 87% of the variability in the total litter production and the production of woody tissues, respectively. Mean temperature, cumulative temperature and total rainfall significantly affected intra-annual variability in litter production, among which the effect of total rainfall was dominant. In conclusion, rainfall, in addition to the biological characteristics of the forests, was a key factor driving the inter- and intra-annual dynamics in litter productions.