鼎湖山森林群落β多样性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金重大资助项目(30590382/C011108); “十一五”国家科技支撑计划重点项目 (2008BADB0B05); 广东省科技资助项目(2005B33301)


Beta diversity of forest community on Dinghushan
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    β多样性反映了环境被物种分割的程度或生境多样性,具有重要的意义。鼎湖山自然保护区地处南亚热带,植被保存完好,具有较高的生物多样性,而当前对其β多样性的研究则相对缺乏。以鼎湖山一条10m×1160m植被样带数据为基础,从不同尺度单元研究了鼎湖山森林群落β多样性。发现:(1)β多样性依赖于尺度,对于南亚热带森林群落要得到比较稳定可靠的β多样性测度数据,乔木层取样尺度应该在10m×20m附近,而灌草层应该在2m×20m或相应面积以上。(2)数量数据β多样性测度总体上优于二元属性数据测度,对于数量属性数据测度应给予更多的关注, 而Cody指数则能指示群落交错区。(3)鼎湖山样带β多样性随海拔呈现不规律变化的格局,而沿纬度梯度,鼎湖山森林群落βc大于东灵山森林群落,与Rapoport法则预测结果一致。

    Abstract:

    Beta diversity effectively reflects the degree of species segmentation along environmental gradient. It is commonly used to analyze the habitat diversity. Dinghushan Natural Reserve is located in Zhaoqing, Guangdong Province, southern China. It belongs to the South subtropical wetness monsoon climate. Dinghushan has well-protected vegetation and high biodiversity, however, researches of beta diversity in this aera is comparatively rare. Based on the data collected from the vegetation transect with 10m wide and 1160m long of Dinghushan, the beta diversities are measured by both binary and numerical data using 5 indexes. The results show that beta diversity is influenced by sampling sizes. In south subtropical forest community, nearly 400m2 for tree layer and more than 40m2 for shrub and herb layer is needed for steady beta diversity data. Numerical data measurement is better than binary data measurement as a whole. Numerical data measurement should be pay more attention, but Cody index is a useful index for indicating ecotones. Beta diversity of Dinghushan vegetation transect decrease less obviously along altitude compared with general pattern, and βc of Dinghushan is larger than Donglingshan which lies in North China.

    参考文献
    相似文献
    引证文献
引用本文

林国俊,黄忠良*,竺琳,欧阳学军.鼎湖山森林群落β多样性.生态学报,2010,30(18):4875~4880

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: