Comparative study on group characteristics of dwarf blue sheep (Pseudois schaefleri) in spring and winter

LIU Guoku¹, ZHOU Caiquan¹,*¹, YANG Zhisong¹, LONG Shuai¹, PAN Li¹, ZENG Guowei², LI Kajun², TANG Lun²

¹ Institute of Rare Animal and Plants College of Life Sciences China West Normal University; Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); Sichuan Provincial Key Laboratory of Environmental Science and Biodiversity Conservation; Nanchong 637009, China
² Batang Forestry Bureau, Batang 627650, China

Abstract: Group characteristics of dwarf blue sheep (Pseudois schaefleri) were studied with line transect method and fixed-point observation method in Zhulalong Nature Reserve of Sichuan Province during winter (in 2007, 2008) and spring (from March to May in 2009). Among the individuals of the dwarf blue sheep observed, a total of 73 groups including 451 individuals of dwarf blue sheep were accumulatively observed in spring and 170 groups including 1036 individuals in winter. The maximum group observed including 34 individuals, and the mean group size was (6.18 ± 5.186) in spring. The maximum group observed including 24 individuals in the winter and the mean group size was (6.65 ± 4.564). The mean group size had no significant difference between spring and winter (P > 0.05). Mixed group was the main group type in winter, and the frequency was 57.20%. The mixed group and the mother – baby group were the main group types in spring, and the frequency were 45.20% and 26.03% respectively. Compared to spring, the mixed group and the solitary occupied higher frequency in winter. However, the main types in spring were the female group and the mother-baby group. Mann-Whitney U tests indicated that during different seasons, the changes of group size of mixed group, female group were not significant (both P > 0.05). But the size of the male group (P < 0.05) and the Ewe-lamb group (P < 0.05) change significantly; Chi-square criterion indicated both in spring and winter, the group sizes among different group types of dwarf
blue sheep were pole significant (P < 0.01) Kruskal-Wallis H tests indicated that the differences group types were not significant (P > 0.05) between spring and winter. The solitary were seldom seen in both winter (15 times) and spring (2 times), including thirteen males and two females in winter, two females in spring, with the frequencies 8.82% and 2.74% respectively; dwarf blue sheep were frequently seen in small herds of 2 to 8 individuals, with the frequencies of 64.12% in winter (165 times) and 76.71% in spring (56 times). The frequencies of the group more than 9 individuals were 22.73% in winter (46 times) and 20.55% in spring (15 times) respectively. Our findings indicated that the groups with 2—8 individuals were most common. Among the individuals observed, there were 607 adults (236 males, 271 females), 143 sub adults and 286 kids in winter, with the frequencies 58.59%, 13.80% and 27.61% respectively. Meanwhile, there were 274 adults including 115 males and 159 females, 49 individuals of sub adults and 128 individuals of kids in spring, and the frequencies were 60.75%, 10.87% and 28.38% respectively. The percentage of the audit was more and the percentage of sub adult and kid were small in winter and spring; the ratio of female-male was 1:0.72 in spring and 1:0.64 in winter, The ratio of female-juvenile was 1:0.81 in spring and 1:0.77 in winter. The results indicated that in winter, the both ratio of female-male and female-juvenile were fewer than spring.

Key Words: winter; spring; dwarf blue sheep; grouping characteristics; Zhubalong Nature Reserve

集群是动物个体对环境条件的反映[1]。集群的行为方式、大小、结构组成等特征会影响种群的出生率和死亡率，从而进一步影响种群的存活和灭绝[2]。群是动物适应特定时间、特定生存环境的社群单位，也是有蹄类动物的重要特征之一。因此，对动物集群行为的研究越来越多地受到关注[3]，对有蹄类动物集群特征的研究有助于了解其种群特征和变化趋势[4-6]。

矮岩羊（Pseudois schaepferi）是我国特有珍稀动物，一直以来，对矮岩羊的集群研究报道较少。王清、申定健等对矮岩羊的集群大小的年际变化进行了比较研究，还对矮岩羊春季和夏季集群大小进行了初步比较，并就春季和秋季两个时间阶段矮岩羊的集群大小做了比较研究[7-9]。但是，还缺乏对矮岩羊冬季集群特征的比较研究，而实际上矮岩羊在冬季和春季的行为特征是一年中最为重要的，因为冬季是它们的交配季节，春季是其产仔前期，细致深入的研究研究冬春季的集群行为，能进一步认识矮岩羊的繁殖和产仔行为，如果能就此提出繁殖和产仔相关的科学建议，就能有效地增加其繁殖成功率，扩大种群规模，对矮岩羊的保护有重要意义。为此，于2007年10月至12月，2008年11月中旬至2009年1月中旬和2009年3月至5月对四川省竹巴笼矮岩羊自然保护区矮岩羊的集群特征进行了对比研究。

1 研究地区和研究方法

1.1 研究地区自然概况

竹巴笼自然保护区（E:98°59’39“—99°14’13“，N:29°33’24“—29°42’32“）地处甘孜藏族自治州西南边缘的巴塘县中部的金沙江东岸，保护区面积23900 hm²。保护区境内气候十分破碎，山川支沟纵横交错，山高，坡陡，谷深为本区地貌的基本特征；区内水系均属金沙江水系，主要的河流有桑达沟、吉里沟、拉哇河谷、尼曲河，均为金沙江的支流，从西向东横穿保护区。受青藏高原高空环流及印度洋季风气候影响，使保护区气候格外干燥，降水量少，尤以金沙江河谷地带更甚，其主要特点是：雨量少而集中，干旱性分明；日照充足，雨热同季；气温年差小，日差较大。保护区内无居民居住，没有农耕区，自然生态环境保护完好，动、植物种类丰富；主要动物有林麝（Moschus berezowskii）、熊（Panthera pardus）、云豹（Neofelis nebulosa）、白唇鹿（Cervus albirostris）、马鹿（Moschus sifanicus）、猕猴（Macaca mulatta）、藏猕猴（Macaca thibetana）、豺（Cuon alpinus）、黑熊（Ursus thibetanus）、马熊（Ursus arotosprinosus）、猕猴（Naemorhedus griseus）、矮岩羊（Pseudois schaepferi）、金雕（Aquila chrysaetos）、胡兀鹫（Gypaetus barbatus）等。主要植物有狗尾草（Setaria viridii）、白草（Pennisetum flexicum）、滇南寸子梢（Campylotropis harmsii）、小菅草（Thereda minor）、风毛菊（Waldheimia）、野荞麦（Fagopyrum cymosum）、白刺花（Sophera davidii）、小花羊蹄甲（Bauhinia sp.）、滇椥（Terminalia franchetti）等。

http://www.ecologica.cn
1.2 研究方法和数据分析

在竹巴笼自然保护区的桑达、尼曲河、归么河谷、马达等处设置了9条样线，采用样线和定点观察相结合的方法对矮岩羊的集群进行调查。样线调查通过步行完成，速度为1.5—2.5 km/h，为避免重复，每条样线走1次，只做单向记录，每条样线长度不小于3 km，每条样线每月调查一次，借助双筒望远镜（10×40）观察样线两侧矮岩羊群体个体数及性别；其余调查时间用Kowa单筒望远镜（20—60倍）作定点观察。定点观察地点设在桑达沟、尼曲河、归么不星松4处矮岩羊经常出没的地方，观察时间为3—5月（春季）06：30—18；3月11—1月（冬季）07：00—18：00。根据实际情况和观察条件，尽可能连续观察，并使用全事件取样法[10]记录矮岩羊的性别、集群大小和类型。春季3—5月；冬季10月—1月。观察时间为每月观察15—25 d，冬季113 d；春季65 d；共计178 d。

群的界定为个体之间的最大距离不超过100 m，并且个体之间大体表现出协调一致的行为；否则记为不同的两群；若其他个体距离至少100 m的单只矮岩羊，算作独羊。

由于数据均不符合正态分布，采用Mann-WhitneyU检验对冬春两季的集群大小进行显著性检验，采用Chi-square检验同一季节集群类型分布差异，Kruskal-WallisH检验不同季节不同集群类型群体大小间的差异。

2 结果

2.1 冬春两季矮岩羊集群的类型及大小

在观察期内，冬季共观察到170群，1036只，春季共观察到73群451只矮岩羊。从表1可以看出冬春两季混合群、雌性群的平均大小相差较小，雄性群和母仔群变化较大。冬季以混合群为主，春季以混合群和母仔群为主（图1）。

采用Mann-WhitneyU检验比较冬春两季集群大小间（P=0.221>0.05）、雌性群平均大小间（P=0.169>0.05），混合群平均大小间（P=0.624>0.05）均无显著性差异。雄性群平均大小间（P=0.028<0.05）和母仔群平均大小间（P=0.001<0.05）差异显著。卡方检验显示春冬两季集群类型分布差异都极显著，春季（χ²=39.808,df=4,P<0.01），冬季（χ²=196.765,df=4,P<0.01）；Kruskal-WallisH检验冬春两季节间的集群类型分布进行比较分析，结果显示差异不显著（χ²=1.500,df=1,P>0.05）。

在所观察到的矮岩羊样本中，冬季记录到独羊15只，占总数的8.82%，其中雄羊13只，雌羊2只；2—8只群合计109次，占总数64.12%；9只以上群（包括9只）合计46次，占总数的27.06%。春季记录到独羊2次，占总数的2.74%，皆为雌性；2—8只群合计55次，占总数76.71%；9只以上群（包括9只）合计15次，占总数的20.55%。表明冬春两季矮岩羊皆以2—8只群为主（图2）。

2.2 年龄组成和性比

在观察记录到的矮岩羊个体中，冬季成年个体607只，亚成体143只，幼体286只，分别占观察到总数的58.59%、13.80%、27.61%；其中成年雄性236只，成年雌性371只，幼体286只；雌雄比为1.0:0.64；雌幼比为1.0:0.77。春季成年个体274只，亚成体49只，幼体128只，分别占观察到总数的60.75%、10.87%、28.38%；其中成年雄性115只，成年雌性159只，幼体128只；雌雄比为1.0:0.72；雌幼比为1.0:0.81（表4）。表明冬、春季

http://www.ecologica.cn
的成体较多，亚成体所占比例都较小，冬季比春季的雌雄比和雌幼比略小。

<table>
<thead>
<tr>
<th>表 1 冬春季矮岩羊群群统计</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 Dwarf Blue Sheep group in spring and winter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>集群类型</td>
</tr>
<tr>
<td>Type of group</td>
</tr>
<tr>
<td>雌性群 Male group</td>
</tr>
<tr>
<td>雌性群 Female group</td>
</tr>
<tr>
<td>穗仔群 Ewe-lamb group</td>
</tr>
<tr>
<td>穗仔群 Mix group</td>
</tr>
<tr>
<td>独羊 Solitary</td>
</tr>
<tr>
<td>总群数 Total group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 2 冬春季矮岩羊群年龄组成和性比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2 Sex-age structure and sex ratio of dwarf Blue Sheep population in spring and winter</td>
</tr>
<tr>
<td>季节 Season</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>春季 Spring</td>
</tr>
<tr>
<td>冬季 Winter</td>
</tr>
</tbody>
</table>

3 讨论

3.1 矮岩羊群群体大小

集群是动物对自然环境的一种适应，集群活动可以降低个体被捕食的风险[13]，减少警戒时间，从而允许个体将更多的时间用于其他行为以增强自身的适合度[14]。冬、春季不同季节矮岩羊群大小间（P = 0.221 > 0.05），雌性群大小间（P = 0.169 > 0.05），混合群大小间（P = 0.624 > 0.05）均无显著性差异，雌性群大小间（P = 0.028 < 0.05）和混合群大小间（P = 0.001 < 0.05）差异显著。矮岩羊的交配季节在冬季，冬季植物的质量和可利用性都降低到了最低点，警戒交配活动又要求较地消耗动物的体力和时间，营养

需求较大，导致矮岩羊对食物摄取严重不足[15]，大的集群可以提高矮岩羊取食效率和减小被捕食的几率。随着季节的推进，交配季节结束，部分混合群解体，9 只以上的群减少，2—8 只小群增加，雌性个体重新组成雌性群；随着幼仔发育程度的变化，成年雌性与幼体和亚成体重新组成母仔群，导致雌性群体变化大，母仔群体变化小，这是群体大小季节变化显著的主要原因。

冬季和春季矮岩羊群大小的季节变化差异不显著，集群大小相对稳定；集群大小与物种有关，一个物种都有比较稳定的集群大小，不同季节集群大小相对稳定，这是与贺兰山岩羊（Pseudois nayaur）冬季比较类似的原因[16]。同季节各集群类型的大小差异却极显著，矮岩羊倾向于采取混合群的集群类型，春、冬季混合群分别占集群总数的 45.20% 和 62.36%，矮岩羊采取混合群，是在长期的进化过程中对自然环境适应的结果。

3.2 矮岩羊群体类型

矮岩羊在冬春时期都以混合型为主，分别占总群数的62.36% 和45.20%，这与岩羊主要集群类型类似[20]。大混合群能够提供大的集群收益，由于其散布面积大，辐射面积广，能大大增加发现捕食者的几率，增加个体存活率[21]。冬季混合群所占比例比春夏季要高，可能与矮岩羊的繁殖活动有关。矮岩羊在交配季节除了取食、警戒活动外，雌性矮岩羊用于对雄性的追逐，醒目行为明显增多，混合群更有利于这种繁殖行为的进行。李新权[22]等认为这可能是受到交配计划的影响，岩羊主要采取跟随交配计划，为实现这种交配计划，雌、雄性个体间必须建立相对稳定的结合关系，即形成混合群[11]，矮岩羊更多的采取混合群可能是一个原因。春季是矮岩羊的生产期，交配期过后，矮岩羊进入分群期，雄性离开混合群重新组成雄群，所以春季混合群所占比例下降，雌性群增多，但混合群仍然是最主要的群体类型。

母仔群是羊亚科动物的基本社会单位[17]。有蹄类动物中，母仔群的形成通常认为是由于雌性和雄性不同的捕食风险造成的[21]，通常雄性体型大于雌性和未成年个体，雄性面临的捕食风险较小[22]，因此雌性选择食物丰富的生境，而雄性在选择生境时，首先选择的是安全性，其次才是营养需求[24][25]。在本次调查中，母仔群是相当稳定的集群类型，幼体反捕食能力较弱，母体为了保护幼体通常采取不同的取食对策和反捕食对策[26][16]，或者母仔在交配期不直接参与交配活动。

雌性群春季比冬季明显增多，可能是春季产仔期，成年雌性个体远离集群，寻找比较安全的栖息地为繁殖活动的进行做准备，导致春季雌性群增多。在同一地区，调查过程中申定健等2008年只观察到一个雌性群，认为雌性群是一种偶见型，这种差异的主要原因可能是不同年份和季节，且春季集群野外观测数据较少所致[9]。

3.3 冬春季矮岩羊性比组成

在观察到的矮岩羊个体中，冬季和春季的亚成体、幼体所占比例都较小，与于增洲[11]、申定健等[8]报道的年长组合结果相似。可能与矮岩羊的繁殖和幼体适应自然环境的能力有关，因为每年每只成年雌羊一般只生1只幼仔，幼仔二三月龄成熟，其中，金雕等天敌对成体和幼体的威胁较大，致使成体和幼体比例较小。

矮岩羊种群在冬季的雌雄比为1:0.64；雌幼比为1:0.77；在春季的雌雄比为1:0.72；雌幼比为1:0.81。这

3.4 影响岩羊群雌雄比的原因分析

影响岩羊群雌雄比的因素有天敌的捕食、食物的可获得性、栖息地结构等[30]。

（1）群体大小与栖息地的地形，地貌等因素有关。栖息地开阔使有蹄类动物易集中形成大群体[16]，竹巴囊自然保护区地形陡峭，又有金沙江相隔，岩羊只分布在金沙江南岸2800—3200m的悬崖峭壁或断坡草甸，不利于集大群活动。

（2）天敌的捕食。区内有豹、云豹、豺、金雕等，都是岩羊的天敌，豹和云豹都在4 000 m左右的高山灌丛活动，对岩羊影响不大。主要是豹，金雕对岩羊幼体的危害较大。

（3）人类活动和家畜影响。在保护区岩羊分布区，人类的活动已经达到海拔4 000 m以上的地方，山间牛场较多，牲畜的存栏数逐年增加，过度放牧造成岩羊栖息地逐渐缩减和破碎化，再加上猎猫活动猖獗，更危及岩羊的生存，应加大对岩羊的保护[31]。

References:

http://www.ecologica.cn

參考文献:

http://www.ecologica.cn