施氮量和花后土壤含水量对优质
强筋小麦产量和品质的影响

赵长星1,2, 马东辉1, 王月福1,*, 林琪1, 吴钢2, 邵宏波3, Cheruth Abdul JALEEL4

1. 青岛农业大学植物科技学院，青岛 266109; 2. 中国科学院生态环境研究中心城市与区域生态国家重点实验室，北京 100085；
3. 青岛科技大学生命科学研究所，青岛 266042;
4. Stress Physiology Lab，Department of Botany，Annamalai University，Tamilnadu, India

摘要：在降水灌溉条件下，研究施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响。结果表明，在同一施氮量条件下，表现为花后土壤含水量过高 (80% - 90%) 或过低 (40% - 50%) 导致氮素减少，千粒重降低，最终使产量降低。在同一土壤含水量下，表现为增加施氮量有利于提高氮素，但过多 (300 kg/m³) 或过少 (150 kg/m³) 施氮均不利于提高氮素和千粒重的提高，而导致减产。在不同土壤含水量下，总蛋白、醇溶蛋白、谷蛋白含量各组分含量的增加而增加。在同一施氮量下，花后土壤含水量过高 (80% - 90%) 或过低 (40% - 50%) 均不利于淀粉及其组分含量的提高。在同一土壤含水量下，过高 (300 kg/m³) 或过低 (150 kg/m³) 施用氮肥均不利于淀粉及其组分含量的提高。保持适宜的花后土壤含水量和施氮的氮肥有利于提高产量。适宜施用氮肥或花后土壤含水量适宜可提高小麦的加工品质。这说明在小麦生产中可以施用氮肥和控制花后土壤水分含量技术，调控小麦品质和产量的形成，从而实现优质高产。

关键词：施氮量；土壤含水量；小麦；产量；品质

Effects of nitrogen fertilizer rate and post-anthesis soil water content on yield and quality of high-quality strong gluten wheat

ZHAO Chang-Xing1,2, MA Dong-Hui1, WANG Yue-Fu1,*, LIN Qi1, WU Gang2, SHAO Hong-Bo2, Cheruth Abdul JALEEL4

1 College of Plant Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
2 State Key Laboratory of Urban and Regional Ecology Research Center for National Status, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3 Institute of Life Sciences, Qingdao University of Science&Technology, Qingdao 266042, China
4 Stress Physiology Lab, Department of Botany, Annamalai University, Tamilnadu, India

Abstract: Effects of nitrogen fertilizer rate and post-anthesis SWC (soil water content) on yield and quality of high-quality

基金项目：国家自然科学基金资助项目(30471026)；青岛农业大学博士启动基金资助项目(630523)；国家粮食科技丰产工程资助项目(2006BAD02A00)

收稿日期：2007-09-19；修改日期：2008-01-16
作者简介：赵长星(1976-), 男, 山东青岛人, 博士, 副教授, 主要从事作物水分生理生态研究。E-mail: zhaochangxing@126.com

*通讯作者 Corrresponding author. E-mail: wangyuefu01@163.com

Foundation item : The project was financially supported by the National Natural Science Foundation of China (No. 30471026) and the Doctor Initializing Foundation of Qingdao Agricultural University (No. 630523)

Received date: 2007-09-19; Accepted date: 2008-01-16

Biography: ZHAO Chang-Xing, Ph. D., Associate professor, mainly engaged in crop water physiology and ecology. E-mail: zhaochangxing@126.com

http://www.ecologica.cn
strong gluten wheat were tested under proof-rainfall pool culture condition. The results showed that over high SWC (80%–90%) or over low SWC (40%–50%) after anthesis could cause the decrease of kernel number per spike, thousand kernel weight (TKW) and final yield under the same nitrogen fertilizer rate. Under the same SWC, it indicated that the increase of nitrogen fertilization was favor to the improvement of kernel number per spike, but too much (300kg/hm²) or too shortage (150kg/hm²) nitrogen fertilization was unfavorable to the increase of kernel number per spike and TKW, at last, it could lead to yield decrease. Moreover, Total protein content, Gliadin, Glutenin, and Gliadin to Glutenin ratio could arise with the increase of nitrogen fertilizer rate under the same SWC. Under the same nitrogen fertilizer rate, Both total protein and its component content decreased with the increase of SWC, meanwhile, Gliadin to Glutenin ratio was reduced. In addition, over high SWC (80%–90%) or over low SWC (40%–50%) after anthesis was unfavorable to the increase of stalk and its component content. However, too much (300kg/hm²) or too shortage (150kg/hm²) nitrogen fertilization was unfavorable to the improvement of stalk and its component content. Only keeping suitable SWC after anthesis and nitrogen fertilization can benefit the improvement of Amylopectin to Amylose ratio. Consequently, proper enhancement in nitrogen fertilization or suitable SWC improved the processing quality of wheat grain. It can be concluded that the techniques of suitable nitrogen application and SWC controlling after anthesis can regulate and control the formation of quality and yield of wheat, in order to realize good quality and high yield in wheat production.

Key Words: nitrogen fertilizer rate; soil water content; wheat (*Triticum aestivum* L.); yield; quality

施氮和灌水是提高小麦产量和改善品质的两项重要措施[1]。山东省是我国优质强筋小麦主产区，但小麦生育期间干旱少雨，尤其是开花后易受旱、干热风等不利因素的影响，成为制约小麦生产发展的主要障碍[7]。多数研究表明，施增氮肥有利于提高小麦产量和蛋白质含量[2,3]，灌水对蛋白质形成具有一定的稀释作用[4–6]。小麦植株对氮肥的吸收利用取决于土壤水分状况，水分和氮肥间存在着明显的协同交互效应[8,9]。小麦开花后是小麦产量和品质形成的关键时期，因此，合理运筹氮肥和小麦开花后土壤水分状况是提高小麦产量、改善品质的重要途径。范学梅等研究了小麦开花后灌水和干旱逆境下施用氮肥对小麦的影响，结果表明，小麦开花后灌水和干旱逆境下施用氮肥对小麦旗叶光合速率和籽粒淀粉积累有明显的调节效应，土壤干旱和灌水下施增氮肥降低生理和籽粒淀粉积累速率，提高蛋白质含量，且适宜水分或亏缺条件下，增施氮肥可以提高蛋白质积累量，而灌水下增施氮肥不利于蛋白质积累[10,11]。目前，国内外有关小麦开花后水分互补效应的研究相对较少，因此，仍需要进一步加强花后不同水条件下生长调节对小麦籽粒品质的形成及调控机制的研究。为此，本试验于防雨池栽条件下，研究了施氮量和花后土壤相对含水量对优质强筋小麦产量和品质的影响，以期为科学合理的补水灌溉和施用氮肥提供理论依据，对于深化小麦品质生态和指导专用小麦调优栽培具有重要的理论意义和应用前景。

1 材料与方法

1.1 试验设计

试验于2004~2006年两个小麦生长季节（此文数据为2a试验数据的统计结果），在青岛农业大学防雨池栽条件下进行，水泥池面积为2 m × 2 m，深1.5 m，不封底，小麦全生育期防降水。潮土壤土8.0~20 cm 土壤有机质1.12%，水解氮84.54 mg/kg，速效磷32.40 mg/kg，速效钾80.10 mg/kg，土壤容重1.34 g/cm³，含水量为田间最大持水量25%。

试验设公顷施纯氮150,225,300 kg 3 个处理，每个氮肥处理均设置小麦开花后土壤相对含水量为田间最大持水量的40%~50%、60%~70%、80%~90% 3 个处理，共计9个处理，随机区组排列，重复3次。

小麦开花期前各处理保持相同的土壤相对含水量（65%），从开花期开始进行水分处理，每隔5d 测量1m深土壤相对含水量，补充水分达到各处理要求并保持稳定的含水量。

各处理均按公顷施有机(基)肥45000kg、P₂O₅225kg、K₂O 112.5kg、硫酸锌15kg、硼酸95kg，连同50% 氮
肥撒施表后平方施于地下，剩余 50% 的氮肥于拔节期结合灌水进行追施。供试品种为优质强筋冬小麦 (*Triticum aestivum* L.) 济麦 20，基本苗为 180 万株/hm²，育苗管理措施同一般高产大田。

1.2 测定项目与方法

土壤含水量采用美国产 503DR 智能型中子水分仪，同时结合烘干法进行测定。成熟时调查亩穗数、穗粒数和千粒重，每池实收 1m²测产，折算成每公顷产量。小麦籽粒贮藏 3 个月后测定品质。

籽粒蛋白质含量测定：用瑞士 FOSS TECOR 公司生产的 Kjeltec2300 自动定氮仪测定，含氮量乘以 5.7 为蛋白质含量。籽粒蛋白质及其组分含量测定：用蛋白质组分的连续提取法进行。籽粒淀粉含量及其组分含量测定：双波长比色法。

籽粒容重：采用上海衡器总厂东衡生产的 HCT-1000 型容重器测定。出粉率测定：使用法国特里百特-雷诺肖邦公司生产的 CD1 实验磨粉机，磨粉后计算得出出粉率。湿面筋含量：参照国标 GB5506-85 手洗法测定。SDS-降值测定：称取 2g 面粉于 50ml 量筒中，加入 25ml 浓度 10mg/l 的溴酚蓝溶液，震荡 5min。加入 25ml 乳酸-SDS 工作液，立即震荡 15min，静止 20min。

拉伸仪指标：采用 JMLD150 面团拉伸仪，测定 15min 的拉伸指标。吹泡强度仪指标：用法国特里百特-雷诺肖邦公司生产的 NG 型吹泡强度仪进行吹泡和强度测定。粘度仪指标：用澳大利亚 NEWPORT 科学仪器公司三快速粘度仪测定。数据处理方法：实验数据采用 Excel 和 SPSS(10.0) 统计软件进行处理与分析，其中用 t 检验进行各处理组间的显著性差异分析。

2 结果与分析

2.1 施氮量和花后土壤相对含水量对小麦产量及其构成因素的影响

小麦产量主要取决于穗粒数及千粒重。由表 1 可看出，在 3 个氮肥水平下，各水分处理间小麦亩穗数差异不显著。各氮肥水平下，均表现为花后土壤相对含水量 60%～70% 处理的穗粒数和千粒重最高，40%～50% 处理最低，80%～90% 处理居中。结果表明花后土壤相对含水量过高或过低均导致穗粒数减少，千粒重降低，最终使产量降低。

<table>
<thead>
<tr>
<th>处理</th>
<th>氮肥用量 (kg/hm²)</th>
<th>含水量 (%)</th>
<th>穗数 (×10⁴ 个/hm²)</th>
<th>穗粒数 (个)</th>
<th>千粒重 (g)</th>
<th>产量 (kg/hm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>40 - 50</td>
<td>649.2</td>
<td>32i</td>
<td>33.9</td>
<td>5979.5i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 - 70</td>
<td>645.5</td>
<td>38c</td>
<td>38.0</td>
<td>7624.4d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 - 90</td>
<td>647.3</td>
<td>36f</td>
<td>36.1f</td>
<td>6691.5g</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>40 - 50</td>
<td>643.3</td>
<td>34g</td>
<td>34.6g</td>
<td>6920.4f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 - 70</td>
<td>666.9</td>
<td>39a</td>
<td>34.1a</td>
<td>8643.2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 - 90</td>
<td>665.6</td>
<td>37d</td>
<td>37.4d</td>
<td>7857.8e</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40 - 50</td>
<td>680.3a</td>
<td>32i</td>
<td>32.9g</td>
<td>6146.3h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 - 70</td>
<td>682.5a</td>
<td>38b</td>
<td>38.0b</td>
<td>8215.2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 - 90</td>
<td>681.6a</td>
<td>37e</td>
<td>36.2e</td>
<td>7439.1e</td>
<td></td>
</tr>
</tbody>
</table>

不同字母表示在 5% 水平上差异显著。Different letters denote significant differences at 5% level

与此同时，同一土壤相对含水量下，穗数均表现为随着施氮量增加而增加，施施氮 225kg/hm²处理穗粒数最多，300kg/hm²处理穗粒数次之，150 kg/hm²的处理穗粒数最少。在 3 个土壤相对含水量下，施氮对千粒重的影响表现不一致。花后土壤缺水 (40% ～50%)，225 kg/hm²处理的千粒重表现最高，其次为 150 kg/hm²的处理，而 300kg/hm²的处理出现最低；在土壤相对含水量为 60% ～70% 和 80% ～90% 的处理下，225kg/hm²
处理的千粒重最高，300kg/hm²的处理次之，150kg/hm²的处理最低。在3个土壤相对含水量下，籽粒产量均表现为225kg/hm²处理最高，300kg/hm²处理次之，150kg/hm²处理最低。上述结果表明适当地增加施氮量有利于提高穗数，过多或过少施氮均不利于穗粒数和千粒重的提高，最终导致减产。

2.2 施氮量和施后土壤相对含水量对小麦籽粒品质的影响

2.2.1 对小麦籽粒蛋白质及其组分含量的影响

由表2可见，同一土壤相对含水量下，籽粒蛋白质含量随着施氮量的增加而增加，并且不同氮肥处理间差异显著（P<0.05）。而同一施氮量条件下，籽粒蛋白质含量随着土壤相对含水量的增加而减少，而且不同水分处理间差异显著（P<0.05）。

表2 施氮量和施后土壤含水量对小麦籽粒蛋白质及其组分含量的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>含水量</th>
<th>蛋白质</th>
<th>清蛋白</th>
<th>球蛋白</th>
<th>醇溶蛋白</th>
<th>谷蛋白</th>
<th>谷/醇比</th>
</tr>
</thead>
<tbody>
<tr>
<td>GN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>40~50</td>
<td>16.3d</td>
<td>2.5</td>
<td>1.9</td>
<td>4.3</td>
<td>6.3</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>16.0e</td>
<td>2.7</td>
<td>2.0</td>
<td>4.1</td>
<td>5.7</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>15.0g</td>
<td>2.5</td>
<td>1.9</td>
<td>3.9</td>
<td>5.3</td>
<td>1.38</td>
</tr>
<tr>
<td>225</td>
<td>40~50</td>
<td>17.7b</td>
<td>2.7</td>
<td>2.1</td>
<td>4.5</td>
<td>6.8</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>16.9c</td>
<td>2.8</td>
<td>2.2</td>
<td>4.1</td>
<td>5.9</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>15.8f</td>
<td>2.7</td>
<td>2.0</td>
<td>4.0</td>
<td>5.6</td>
<td>1.41</td>
</tr>
<tr>
<td>300</td>
<td>40~50</td>
<td>18.1a</td>
<td>2.7</td>
<td>1.9</td>
<td>4.7</td>
<td>7.2</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>17.6b</td>
<td>2.7</td>
<td>1.9</td>
<td>4.6</td>
<td>6.6</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>17.0c</td>
<td>2.6</td>
<td>1.8</td>
<td>4.4</td>
<td>6.3</td>
<td>1.43</td>
</tr>
</tbody>
</table>

不同字母表示在5%水平上差异显著 Different letters denote significant differences at 5% level

同时分析表明，同一土壤相对含水量下，籽粒蛋白质组分中清蛋白和球蛋白含量而言，表现为225kg/hm²处理最高，其次为300kg/hm²处理，最低则为150kg/hm²处理。同时，醇溶蛋白、麦谷蛋白含量及谷/醇比表现随着施氮量增加而提高。同一施氮量下，清蛋白、球蛋白、醇溶蛋白和麦谷蛋白含量均随土壤相对含水量增加而降低，同时谷/醇比也降低。说明一定条件下，适量地增加施氮量能够增加醇溶蛋白、麦谷蛋白和总蛋白质含量，提高谷/醇比；花后过高的土壤相对含水量不利于籽粒蛋白质及各组分含量的提高。

2.2.2 对小麦籽粒淀粉及其组分含量的影响

表3表明，同一施氮量，总淀粉、直链和支链淀粉含量均表现为花后土壤相对含水量60%~70%处理的最高，80%~90%处理居中，40%~50%处理最低，说明了花后土壤相对含水量过高或过低均不利于淀粉及其组分含量的提高。同一土壤相对含水量下，总淀粉、直链及支链淀粉含量均表现为225kg/hm²处理最高，300kg/hm²处理次之，150kg/hm²处理最低。可以得知过高的低施用氮肥有利于淀粉及其组分含量的提高。

分析表明（表3），同一施氮量下，支/直比则均表现为花后土壤相对含水量60%~70%处理的最高，80%~90%处理居中，40%~50%处理最低，在同一土壤相对含水量下，支/直比则均表现为225kg/hm²处理最高，300kg/hm²处理次之，150kg/hm²处理最低。说明花后土壤相对含水量和施氮量过高或过低均不利于支/直比的提高，只有保持适宜的花后土壤相对含水量和施适宜的氮肥才有利于支/直比的提高。

2.2.3 对容重、出粉率、湿面筋含量、沉降值的影响

由表4可以看出，容重和出粉率的变化趋势基本一致，即在同一施氮量下，容重和出粉率均表现为60%~70%处理的最高，80%~90%处理居中，40%~50%处理最低。说明保持花后适宜的土壤相对含水量可以提高小麦籽粒的容重和出粉率。同一土壤相对含水量下，容重和出粉率则表现为225kg/hm²处理 > 150kg/hm²

http://www.ecologica.cn
处理 > 300kg/ha²处理，说明适当增加施氮量可以提高容重和出粉率，但施氮过多，反而会引起容重和出粉率降低。

表 3 施氮量和花后土壤含水量对小麦籽粒淀粉及其组分含量的影响（%）

<table>
<thead>
<tr>
<th>施氮量</th>
<th>含水量</th>
<th>总淀粉</th>
<th>直链淀粉</th>
<th>支链淀粉</th>
<th>支/直比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen fertilizer rate (kg/ha²)</td>
<td>Soil water content (%)</td>
<td>Starch (%)</td>
<td>Amylose (%)</td>
<td>Amylopeptin (%)</td>
<td>Amylopeptin to Amylose ratio (%)</td>
</tr>
<tr>
<td>150</td>
<td>40 - 50</td>
<td>62.6g</td>
<td>20.8</td>
<td>41.8</td>
<td>2.01</td>
</tr>
<tr>
<td>60 - 70</td>
<td>66.1e</td>
<td>21.4</td>
<td>44.7</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>64.0e</td>
<td>21.1</td>
<td>42.9</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>40 - 50</td>
<td>64.1e</td>
<td>21.0</td>
<td>43.0</td>
<td>2.04</td>
</tr>
<tr>
<td>60 - 70</td>
<td>67.5a</td>
<td>21.7</td>
<td>45.8</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>66.1e</td>
<td>21.4</td>
<td>44.8</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40 - 50</td>
<td>63.3f</td>
<td>21.0</td>
<td>42.3</td>
<td>2.02</td>
</tr>
<tr>
<td>60 - 70</td>
<td>66.8b</td>
<td>21.5</td>
<td>45.3</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>64.5d</td>
<td>21.1</td>
<td>43.3</td>
<td>2.05</td>
<td></td>
</tr>
</tbody>
</table>

不同字母表示在5%水平上差异显著 Different letters denote significant differences at 5% level

表 4 施氮量和花后土壤含水量对小麦籽粒容重、出粉率、湿面筋含量和沉降值的影响

<table>
<thead>
<tr>
<th>施氮量</th>
<th>含水量</th>
<th>容重</th>
<th>出粉率</th>
<th>湿面筋</th>
<th>沉降值</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen fertilizer rate (kg/ha²)</td>
<td>Soil water content (%)</td>
<td>Grain test weight (g/L)</td>
<td>Flour extraction (%)</td>
<td>Flour wet gluten (%)</td>
<td>Zeleny sedimentimetry (ml)</td>
</tr>
<tr>
<td>150</td>
<td>40 - 50</td>
<td>753.0g</td>
<td>46.6</td>
<td>35.8</td>
<td>36.0 ± 2.0</td>
</tr>
<tr>
<td>60 - 70</td>
<td>802.5b</td>
<td>52.7</td>
<td>33.8</td>
<td>33.0 ± 1.6</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>785.8e</td>
<td>47.9</td>
<td>27.5</td>
<td>24.5 ± 1.2</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>40 - 50</td>
<td>764.0f</td>
<td>47.0</td>
<td>37.6</td>
<td>42.0 ± 3.1</td>
</tr>
<tr>
<td>60 - 70</td>
<td>805.4a</td>
<td>53.7</td>
<td>36.0</td>
<td>35.0 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>789.0d</td>
<td>50.4</td>
<td>29.5</td>
<td>25.0 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40 - 50</td>
<td>734.4h</td>
<td>46.4</td>
<td>38.4</td>
<td>44.0 ± 3.0</td>
</tr>
<tr>
<td>60 - 70</td>
<td>802.0e</td>
<td>51.7</td>
<td>36.9</td>
<td>37.5 ± 2.2</td>
<td></td>
</tr>
<tr>
<td>80 - 90</td>
<td>785.5e</td>
<td>47.4</td>
<td>35.8</td>
<td>28.5 ± 2.1</td>
<td></td>
</tr>
</tbody>
</table>

不同字母表示在5%水平上差异显著 Different letters denote significant differences at 5% level

此外，同一施氮量下，湿面筋含量和沉降值随着土壤相对含水量的增加而降低，表明花后土壤相对含水量过高会导致湿面筋含量和沉降值降低；而同一土壤相对含水量下，湿面筋含量和沉降值则随着施氮量的增加而升高，表明增加施氮肥可以调节小麦的湿面筋含量和沉降值。

2.2.4 对拉伸仪指标的影响

延伸度是面团粘性与veyor延伸性优劣的标志。表 5 结果表明，同一施氮量条件下，延伸度表现为随着土壤相对含水量降低而减小，而面团延展性变大；而同一土壤相对含水量下，表现为随着施氮量的增加而减小，表明施氮肥和减少土壤相对含水量可减小延伸度。

拉伸阻力是面团纵向弹性优劣的标志，即面团的延展性所控制的机理性。由表 5 可以得知，同一施氮量下，拉伸阻力和最大拉伸阻力表现为随着土壤相对含水量增加而减小，表明提高花后土壤相对含水量降低了面团弹性；而同一土壤相对含水量下，表现为随着施氮量的增加而增加，表明增加施氮肥可提高面团弹性。

拉伸面积代表面团的强度。由表 5 见，同一施氮量下，拉伸面积表现为随着土壤相对含水量增加而减小；相同土壤相对含水量下，拉伸面积则表现为随着施氮量的增加而增加。表明增加施氮量及降低花后土壤相对含水量会提高面团的强度。

http://www.ecologica.cn
表 5 施氮量和花后土壤含水量对小麦籽粒面粉拉伸指标的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>拉伸面积 (cm²)</th>
<th>延伸度 (mm)</th>
<th>拉伸阻力 (EU)</th>
<th>最大拉伸阻力 (EU)</th>
<th>拉伸比</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>162</td>
<td>160</td>
<td>430</td>
<td>701</td>
<td>2.69</td>
</tr>
<tr>
<td>60 - 70</td>
<td>132</td>
<td>168</td>
<td>351</td>
<td>611</td>
<td>2.09</td>
</tr>
<tr>
<td>80 - 90</td>
<td>120</td>
<td>181</td>
<td>305</td>
<td>527</td>
<td>1.70</td>
</tr>
<tr>
<td>225</td>
<td>180</td>
<td>151</td>
<td>460</td>
<td>867</td>
<td>3.05</td>
</tr>
<tr>
<td>60 - 70</td>
<td>159</td>
<td>165</td>
<td>410</td>
<td>719</td>
<td>2.48</td>
</tr>
<tr>
<td>80 - 90</td>
<td>147</td>
<td>172</td>
<td>361</td>
<td>641</td>
<td>2.10</td>
</tr>
<tr>
<td>300</td>
<td>206</td>
<td>131</td>
<td>494</td>
<td>872</td>
<td>3.77</td>
</tr>
<tr>
<td>60 - 70</td>
<td>188</td>
<td>144</td>
<td>436</td>
<td>807</td>
<td>3.03</td>
</tr>
<tr>
<td>80 - 90</td>
<td>160</td>
<td>163</td>
<td>393</td>
<td>748</td>
<td>2.41</td>
</tr>
</tbody>
</table>

2.2.5 对吹泡仪指标的影响

P 值是面团张变的最大张力，反映面团的变阻力，即其韧性。P 值越大表示面粉的面团弹性越好。从表 6 可以看出，同一施氮量下，P 值随着花后土壤相对含水量的增加而增加。表明施氮量增加而增大土壤相对含水量会增大面团弹性，降低面团延展性。

L 值表示面团膨胀破裂最大的距离，G 值是气泡系数，两者均反映了面团延展性。由表 6 可知，在同一施氮量下，L 值和 G 值随着花后土壤相对含水量的增加而增大。表明提高花后土壤相对含水量可以提高面团延展性。

表 6 施氮量和花后土壤含水量对小麦籽粒面粉吹泡仪指标的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>弹性 P (mmH₂O)</th>
<th>延伸性 L (mm)</th>
<th>充气系数 G (ml)</th>
<th>强度 W (cm²)</th>
<th>弹性指数 l_e (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>56.0</td>
<td>128.0</td>
<td>27.6</td>
<td>103.0</td>
<td>0.44</td>
</tr>
<tr>
<td>60 - 70</td>
<td>49.0</td>
<td>144.0</td>
<td>27.8</td>
<td>82.0</td>
<td>0.34</td>
</tr>
<tr>
<td>80 - 90</td>
<td>44.0</td>
<td>156.0</td>
<td>28.0</td>
<td>71.0</td>
<td>0.28</td>
</tr>
<tr>
<td>225</td>
<td>59.0</td>
<td>109.0</td>
<td>23.2</td>
<td>105.0</td>
<td>0.54</td>
</tr>
<tr>
<td>60 - 70</td>
<td>55.0</td>
<td>129.0</td>
<td>26.2</td>
<td>97.0</td>
<td>0.43</td>
</tr>
<tr>
<td>80 - 90</td>
<td>46.0</td>
<td>147.0</td>
<td>27.0</td>
<td>77.0</td>
<td>0.31</td>
</tr>
<tr>
<td>300</td>
<td>61.0</td>
<td>98.0</td>
<td>20.9</td>
<td>113.0</td>
<td>0.62</td>
</tr>
<tr>
<td>60 - 70</td>
<td>58.0</td>
<td>110.0</td>
<td>23.1</td>
<td>101.0</td>
<td>0.53</td>
</tr>
<tr>
<td>80 - 90</td>
<td>50.0</td>
<td>128.0</td>
<td>26.3</td>
<td>87.0</td>
<td>0.39</td>
</tr>
</tbody>
</table>

P/L 值是吹泡曲线的配合比，反映吹泡曲线的形状。在 P/L 值都较大的情况下，P/L 越大，面团筋性越好。由表 6 可知，同一施氮量下，P/L 值随着花后土壤相对含水量的增加而减小。表明施氮量对小麦面团筋性影响较大。同一土壤相对含水量下，P/L 值随着施氮量的增加而提高，表明增加施氮量可以提高面团筋性。

W 值是面团变形变形力的反映，反映吹泡曲线所包围的面积，与烘焙力相关。由表 6 可以看出，同一施氮量下，W 值表现为随着花后土壤相对含水量的增加而减小，同一土壤相对含水量下，呈现出随着施氮量的增加而提高，表明增加施氮量和降低花后土壤相对含水量会增大面团的烘焙力。

l_e 值（弹性指数）反映面团的弹性阻力。同一施氮量下，弹性指数表现为随着花后土壤相对含水量的增加而减小。
加而减小，表明降低施氮量可以提高面团弹性；同一土壤相对含水量下，弹性指数表现为随着施氮量的增加而提高，表明增施氮肥可提高面团弹性（表6）。

2.2.6 对粘度仪指标的影响

表7结果显示，同一施氮量下，吸水率、面团形成时间和稳定时间表现为随着土壤相对含水量的增高而减小；同一土壤相对含水量下，吸水率、面团形成时间和稳定时间表现为随着施氮量的增加而提高。结果表明了增施氮肥和降低含氮土壤相对含水量可提高小麦粉吸水率和延长面团形成时间与稳定时间，改善面粉品质。

<table>
<thead>
<tr>
<th>施氮量 Nitrogen fertilizer rate (kg/hm²)</th>
<th>含水量 Soil water content (%)</th>
<th>面粉吸水率 water absorption rate of flour (%)</th>
<th>面团形成时间 Dough development time (s)</th>
<th>面团稳定时间 Dough stability time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>40~50</td>
<td>50.8</td>
<td>87</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>48.8</td>
<td>81</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>47.0</td>
<td>45</td>
<td>142</td>
</tr>
<tr>
<td>225</td>
<td>40~50</td>
<td>51.6</td>
<td>98</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>49.9</td>
<td>86</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>49.2</td>
<td>78</td>
<td>148</td>
</tr>
<tr>
<td>300</td>
<td>40~50</td>
<td>52.1</td>
<td>105</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>51.2</td>
<td>92</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>50.8</td>
<td>85</td>
<td>159</td>
</tr>
</tbody>
</table>

2.2.7 对粘度仪指标的影响

由表8可知，同一施氮量下，峰值粘度、低谷粘度、最终粘度和衰减值表现为 60% ~ 70% 处理的最高，80% ~ 90% 处理次之，40% ~ 50% 处理最低。而在同一土壤相对含水量下，其高低顺序为则为 225kg/hm² 处理 > 300kg/hm² 处理 > 150kg/hm² 处理。

<table>
<thead>
<tr>
<th>施氮量 Nitrogen fertilizer rate (kg/hm²)</th>
<th>含水量 Soil water content (%)</th>
<th>峰值粘度 Peak viscosity (cp)</th>
<th>低谷粘度 Through viscosity (cp)</th>
<th>衰减值 Break down (cp)</th>
<th>最终粘度 Final viscosity (cp)</th>
<th>稠化温度 Pasting temperature (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>40~50</td>
<td>2272</td>
<td>1784</td>
<td>488</td>
<td>3278</td>
<td>88.0</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>2507</td>
<td>1803</td>
<td>704</td>
<td>3356</td>
<td>85.6</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>2449</td>
<td>1786</td>
<td>663</td>
<td>3125</td>
<td>87.2</td>
</tr>
<tr>
<td>225</td>
<td>40~50</td>
<td>2443</td>
<td>1823</td>
<td>620</td>
<td>3363</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>2709</td>
<td>1963</td>
<td>746</td>
<td>3575</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>2561</td>
<td>1849</td>
<td>712</td>
<td>3327</td>
<td>87.4</td>
</tr>
<tr>
<td>300</td>
<td>40~50</td>
<td>2366</td>
<td>1796</td>
<td>570</td>
<td>3318</td>
<td>87.4</td>
</tr>
<tr>
<td></td>
<td>60~70</td>
<td>2586</td>
<td>1860</td>
<td>726</td>
<td>3441</td>
<td>86.6</td>
</tr>
<tr>
<td></td>
<td>80~90</td>
<td>2467</td>
<td>1780</td>
<td>687</td>
<td>3257</td>
<td>87.0</td>
</tr>
</tbody>
</table>

同时，同一施氮量下，稠化温度表现为 40% ~ 50% 处理的最高，其次为 80% ~ 90% 处理居中，最低则为 60% ~ 70% 处理，最大差异为 2.4℃；在同一土壤相对含水量下，其值由高到低则为 225kg/hm²，150kg/hm²，300kg/hm²，但处理间差异不十分显著（P < 0.05）。

上述结果表明，适量增施氮肥或适宜的花后土壤相对含量水可提高淀粉的峰值粘度、最终粘度和衰减值，改善淀粉品质。

3 讨论与结论

3.1 施氮量和花后土壤含水量对小麦产量及其构成因素的影响

范学平等[12]研究表明，小麦花后浸水或干旱显著降低千粒重、穗粒数和籽粒产量，在适宜水分和干旱条
件下，施氮施磷增加了籽粒产量，而在滴水条件下，增施氮肥降低了产量。本试验结果表明，不同氮肥水平下，花后小麦施磷后水分过多（80%~90%）或不足（40%~50%）均会导致穗粒数减少，千粒重降低，产量较低；此外，在3个土壤相对含水量下，表现为适量施用氮素具有较为明显的增产效应，水肥互作表现出正效应，但过多（300kg/ha）或过少（150kg/ha）施氮均不利于穗粒数和千粒重的提高，最终减产，水肥互作表现为负效应。

3.2 施氮量和花后土壤含水量对小麦籽粒蛋白质及其组分含量的影响

小麦品质不仅取决于籽粒中的蛋白质含量，更重要的是蛋白质质量，即蛋白质各组分的类型、含量及比例。为改善小麦加工品质的重要措施[14]。土壤水分亏缺也影响籽粒蛋白质的积累和品质的改善[15]。范学梅等[12]研究认为，干旱使籽粒蛋白质含量提高，进而使籽粒蛋白质含量下降，干旱不利于醇溶蛋白的积累，土壤干旱有利于谷蛋白的积累。本研究发现，同一土壤相对含水量下，总蛋白质、醇溶蛋白、麦谷蛋白含量及谷/醇比随施氮量的增加而增加，实验结果说明了花后在相同的水分条件下，适量的施增氮肥有利于籽粒蛋白质的积累及组分比例的改善。而在同一施氮量条件下，总蛋白质及各组分均随着土壤相对含水量的增加而降低，同时谷/醇比也降低，同样说明了花后土壤含水过高或过低均不利于籽粒蛋白质及各组分含量的提高。

3.3 施氮量和花后土壤含水量对小麦籽粒淀粉及其组分含量的影响

淀粉是小麦籽粒的重要组成部分，其含量与支链/直链淀粉含量是决定性条件的面团、馒头的制品质。范学梅等[12]研究认为，在干旱和灌水条件下，增施氮肥可以提高小麦籽粒支链淀粉含量，降低直链淀粉含量，从而提高支链/直链淀粉含量，改善小麦的加工品质。本试验结果表明，在同一施氮量下，花后适宜的土壤相对含水量（5%~7%）有利于小麦籽粒中总淀粉、直链淀粉和支链淀粉含量提高及支/直比例的改善；相反，同一土壤含水量下，过低（300kg/ha）或过高（150kg/ha）施氮则不利于淀粉与其组分含量的提高及比例的改善。

可见，花后土壤含水量和施氮量过高或过低均不利于支/直比的提高及含量的积累，这也说明了花后水肥组合对小麦籽粒淀粉的含量及组成具有明显的交互作用。此外，在适宜的土壤水分条件下，适当增施氮肥可以提高含量和出粉率，而施氮过多，反而会引起含量和出粉率降低。

3.4 施氮量和花后土壤含水量对小麦加工品质的影响

因此，在生产过程中，采用合理的水肥措施，必须注重氮和水互作效应对小麦籽粒品质形成方面的重要影响，既可保证高产又可兼顾品质。总之，在小麦生产实践中，通过适当施用氮肥和精确地控制花后土壤水分含量等技术，实施有目的地调控小麦品质和产量的形成，最终可以实现优质高产，但关于氮氨最佳组合对花后小麦籽粒品质和产量形成的影响是调控机制还有待进一步探讨。
References:

参考文献：

http://www.ecologica.cn