培养基基组分对沙打旺（Astragalus adsurgens Pall）组培根增殖的影响及其培养滤液提取物的化感活性

于福科1，马永清2，＊，黄新会3

（1. 云南大学生命科学学院暨云南生物资源学院重点实验室培育基地，昆明 650001；2. 中国科学院水利部水土保持研究所与西北农林科技大学，陕西杨凌 712100；3. 西南林学院环境科学与工程系，昆明 650024）

摘要：采用I_4 (3^5) 正交设计，研究了B、培养基营养组分对沙打旺组培根增殖的影响，并采用玻璃皿滤纸培养法，对其培养滤液提取物进行生物测定以验证沙打旺组培根的化感活性。结果表明：培养基的所有营养组分中，Fe^{3+} 对沙打旺组培根增殖的影响最大，其次为Mg^{2+}、Mn^{2+}、Cu^{2+}、Zn^{2+}、Co^{2+}、I^{-}、C_{6}H_{5}ClNO_{2} + C_{2}H_{5}ClN_{2}O_{2} + C_{2}H_{6}O_{2}N + C_{6}H_{2}O_{2}。根据不同营养条件下沙打旺组培根干重的极差分析，筛选出适宜沙打旺组培根快速增殖的优化培养基。培养滤液提取物的生物测定结果表明沙打旺组培根培养过程中可能产生化感物质，化感作用强度的差异预示营养胁迫可能影响其化感物质的产生。研究为沙打旺组培根再生繁育提供一定依据，并揭示营养条件可能是影响植物表达化感作用的影响因素。

关键词：沙打旺；组培根；培养基组分；培养滤液提取物；化感作用

论文编号：1000-0933 (2008) 09-4184-11 中图分类号：Q142，Q945，Q48 文献标识码：A

Effect of growth medium composition on the propagation of cultured milk vetch (Astragalus adsurgens Pall) roots and the allelopathic activity of extracts from the culture filtrate

YU Fu-Ke1, MA Yong-Qing2,＊, HUANG Xin-Hui3

1 Laboratory for Conservation and Utilization of Bio-Resource & School of Life Science, Yunnan University, Kunming, Yunnan 650091, China
2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest Sci-Tech University of Agriculture and Forestry, Yangling, Shaanxi 712100, China
3 Department of Environmental Science & Engineering, South-West Forestry College, Kunming, Yunnan 650024, China

Abstract: The objective of this research was to determine effects of growth medium composition on the propagation of cultured milk vetch (Astragalus adsurgens Pall) roots. An orthogonal design was used to test multiple components in the

基金项目：国家“十一五”科技支撑计划课题资助项目（2006BAD09B08）；云南省应用基础研究计划面上资助项目（2007C022M）；云南大学首批学术创新团队资助项目

收稿日期：2007-11-05；修订日期：2008-05-08

作者简介：于福科（1976－），男，甘肃灵台人，博士，主要从事化学生态学与入侵生态学研究。E-mail：geyk2006@ ynu. edu. cn，ylfk2005@yahoo. com. cn

＊通讯作者 Correspondence author. E-mail：mayongqing@ ms. iswe. ac. cn

致谢：The authors sincerely acknowledge Dr. and Mrs. William Gale for helping with the revision of this manuscript.

Foundation item: The project was financially supported by National “Eleventh-Five Years Plan” Key Project Science and Technology (No. 2006BAD09B08)，Yunnan General Planning Project of Foundation & Application Research (No. 2007C022M)，Planning Project for Initial Academic Innovation Teams of Yunnan University

Received date: 2007-11-05；Accepted date: 2008-05-08

Biography: YU Fu-Ke, Ph. D. , mainly engaged in chemical ecology and invasive ecology. E-mail: geyk2006@ ynu. edu. cn, ylfk2005@yahoo. com. cn

http://www. ecologica. cn
growth medium. A second objective was to measure allelopathic activities of cultured milk vetch roots by conducting a bioassay using filtered extracts from the growth medium after culturing the roots. The results indicated that among all the nutritional components, Fe$^{2+}$ had the greatest effect on the propagation of cultured milk vetch roots; the effects of sucrose, H$_2$PO$_4^-$, Mg$^{2+}$, Mn$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, BO$_3^{3-}$, Ca$^{2+}$, I$^-$ and C$_6$H$_5$ClNO$_3^-$ + C$_7$H$_8$Cl$_2$N$_2$O$_5$ + C$_6$H$_4$O$_2$N + C$_6$H$_5$O$_2$N were intermediate; and the effects of nitrogen, Ca$^{2+}$, MoO$_4^{2-}$ and NAA were lowest. A recommendation was made regarding the optimum nutrient content of growth medium for the propagation of cultured milk vetch roots. A bioassay using filtered extracts from the growth medium indicated that milk vetch roots might have produced allelopathic chemicals during their culture. Differences in the degree of allelopathic effects suggest that nutrient stress may influence the production of allelopathic chemicals. This study provides a basis for the improvement of milk root regeneration and propagation and suggests that nutrition may influence the production of allelopathic chemicals by this plant.

Key Words: milk vetch; cultured root; medium composition; culture filtrate extracts; allelopathic effect

Milk vetch (*Astragalus adsurgens* Pall) is a perennial pasture plant that is native to China. Milk vetch grows well under a wide range of conditions. Its high protein content makes it a desirable forage plant for livestock. Consequently, milk vetch has been planted in dry areas of northern China for over 100 years.

In recent decades, milk vetch has been widely studied (e.g., biological characteristics[1,2], physiology and ecology[3-6], pests and diseases[7-10], heredity and breeding[11,12], cell, tissue and organ culture[13-16], planting techniques and utilization[17,18]). These findings have promoted the use of milk vetch as a forage and green manure crop. Milk vetch has also been used for ecological restoration[19].

One specific finding from the studies listed above was that the introduction of milk vetch resulted in a rapid shift from a Mongolian thyme (*Thymus mongolicus* Ronn) community to a Bunge needlegrass (*Stipa bungeana* Trin.) community[19-21]. Banded sowing of milk vetch led to an increase in the yield of air-dry herbage, a decrease in poisonous plants, and an increase in the proportion of legumes[22]. Moreover, the establishment of milk vetch enhanced the degree of vegetative cover and altered the community composition of pastures on steep slope[22]. Guan *et al.* [23] observed that short-rooted cereal pastures grew well after milk vetch pastures declined, however, long-rooted legume forages grew poorly. Liu *et al.*[24] found that yield and biomass of millet [*Setaria italica* (L.) Beauv] was significantly less in fields infested with milk vetch compared to fields that had previously been planted to smooth brome grass (*Bromus inermis* Leyss). Du *et al.*[25] emphasized that there was a sharp decline in forage yield when milk vetch was planted for more than three consecutive years in agricultural areas with rainfall of 300 mm. The observations described above have traditionally been attributed to competition between species. However, recent studies suggest that allelopathy could be a contributing factor[26].

Allelopathy is an interspecific relationship between plants and other organisms. It is a common phenomenon in nature and plays a significant role in the existence and multiplication of some plant species[27]. Allelopathy in plants is influenced by environmental factors[28], especially soil microorganisms[29,30]. The presence and effect of microorganisms complicates allelopathic research. Sterile plant material eliminates environmental effects caused by microorganisms and therefore is considered ideal for the analysis of allelopathy[31,32]. Hence, we used sterile cultures of milk vetch roots in this study.

The climate is dry in the main milk vetch growing areas of northern China. The aerial parts of the plant are harvested two or three times per year. This suggested to us that the release of bioactive substances from milk vetch shoots might be limited. We hypothesized that the majority of bioactive chemicals were released from underground parts of milk vetch. This was another important reason why we used cultured roots but not other cultured tissues.

http://www.ecologica.cn
The objective of this experiment was twofold. First, we wanted to determine the influence of growth medium compositions on the propagation of cultured milk vetch roots. Second, we wanted to analyze the allelopathic effects of milk vetch roots. The latter objective was pursued by treating radish (Raphanus sativus L.), wheat (Triticum aestivum Linn) and milk vetch seeds with filtered extracts from the growth medium that had been used to culture milk vetch roots and then measuring the germination and seedling growth of the three species. This research should provide a basis for determining the allelopathic effect of milk vetch on other plant species.

1 Materials and methods

1.1 Establishment of sterile and stable milk vetch root cultures

Milk vetch seeds were surface sterilized in 72% (m/m) ethanol for 3 min and then washed three times with autoclaved distilled water. The seeds were then put into 1% NaClO for 5 min and washed three times with autoclaved distilled water. Surface sterilized seeds were cultured for 12 days in a 200 ml flask containing 50 mL of MS medium (pH 5.7) with agar. The flask was kept in an incubator at 25°C with (40 ± 2) μmol/m³·s of light.

Seedling roots were excised and put into a 200 mL flask containing 50 mL of B₅ medium (pH 5.7) with 2.0% sucrose and 2.148 μmol/L of NAA. The excised roots were cultured in the dark on a rotary shaker ((70 ± 1) r/min) at 25°C and sub-cultured at three week intervals. After six months of sub-culture, the propagated cultures of milk vetch root were stable.

1.2 Test to determine the effect of medium composition on the propagation of cultured milk vetch roots and the preparation of culture filtrate extracts

This experiment was designed to determine the effect of medium composition on the propagation of cultured milk vetch roots. The basic medium for the propagation of cultured milk vetch roots was B₅. Adjustments in all compositions content of the medium were made according to the descriptions in Table 1. There were nine treatments arranged in an orthogonal design\(^{[33]}\) (Table 2). Each media treatment contained the same components, but the levels of the components varied among treatments.

For each treatment, a 0.1 g (fresh weight) segment of sterile milk vetch root was transferred to a 100 ml Erlenmeyer flask containing 25 ml of improved B₅ medium (pH 5.7). After incubation in a rotary shaker ((70 ± 1) r/min) at 25°C for 18 d, the cultured roots were collected, freeze-dried and weighed. Least significant differences (LSD) in the dry weight of cultured roots were determined using JMP 4.0 software. In addition, the dry weight of the cultured roots in each treatment was compared by range analysis to select the optimum improved medium for the propagation of cultured milk vetch roots.

Used medium from each treatment was vacuum filtered and then partitioned three times with ethyl acetate [culture filtrate; ethyl acetate =1:1 (V/V)]. The ethyl acetate phase was collected from each kind of culture filtrate and then evaporated to dryness with a rotary evaporator. The dry substance remaining in the evaporation flask will be referred to as the culture filtrate extract throughout the rest of this paper.

1.3 Test to determine the effect of culture filtrate extract on seed germination and seedling growth of other plants

The purpose of this part of our experiment was to determine if milk vetch roots had an allelopathic effect on the germination and growth of radish (cv. Xinong-Qingfengdong), wheat (cv. Xiaoyan No. 22) and milk vetch (collected from Guyuan, Ningxia Hui Autonomous Region in October, 2005).

Solutions of the culture filtrate extracts (SCFE) were prepared by dissolving the culture filtrate extracts described in the previous section in a small amount of acetone. Distilled water was added to the samples to bring them up to the same volume as that of the culture filtrate before it was partitioned with ethyl acetate. There were nine SCFEs. A solution containing distilled water was also prepared as a control (CK). This made a total of ten SCFE
<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Primary steppe type</th>
<th>Soil type</th>
<th>Degeneration degree</th>
<th>Geographic coordinate</th>
<th>Altitude (m)</th>
<th>Soil usage type</th>
<th>Dominant species</th>
<th>Biomass productivity (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>羊草样地</td>
<td>Leymus chinensis typical steppe</td>
<td>暗栗钙土</td>
<td>Enclosed grassland for 22 years</td>
<td>N 43°33'02.4", E 116°40'30.0"</td>
<td>1277</td>
<td></td>
<td>羊草 L. chinensis, 大针茅 S. grandis</td>
<td>179.16 ± 27.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Enclosed and seasonal grazed</td>
<td>N 43°33'18.9", E 116°40'26.7"</td>
<td>1258</td>
<td></td>
<td>大针茅 S. grandis, 松针草 C. squarrosa, 羽茅 A. sibiricum</td>
<td>195.48 ± 26.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium-grazed</td>
<td>N 43°34'01.0", E 116°40'40.1"</td>
<td>1238</td>
<td></td>
<td>大针茅 S. grandis, 松针草 C. squarrosa, 星毛委陵菜 Potentilla acuila</td>
<td>106.80 ± 20.93</td>
</tr>
<tr>
<td>大针茅样地</td>
<td>S. grandis typical steppe</td>
<td>典型栗钙土</td>
<td>Enclosed grassland for 22 years</td>
<td>N 43°32'24.5", E 116°33'19.6"</td>
<td>1193</td>
<td></td>
<td>大针茅 S. grandis, 羊草 L. chinensis, 鳄壳虫 Cares konhishy</td>
<td>137.52 ± 27.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Enclosed and harvest grassland</td>
<td>N 43°33'59.3", E 116°36'05.6"</td>
<td>1225</td>
<td></td>
<td>大针茅 S. grandis, 松针草 C. squarrosa, 羊草 L. chinensis</td>
<td>93.18 ± 12.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium grazing</td>
<td>N 43°34'05.4", E 116°36'16.0"</td>
<td>1225</td>
<td></td>
<td>松针草 C. squarrosa, 大针茅 S. grandis, 星毛委陵菜 P. acuila</td>
<td>95.07 ± 25.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heavily grazing</td>
<td>N 43°33'09.2", E 116°33'16.8"</td>
<td>1180</td>
<td></td>
<td>松针草 C. squarrosa, 大针茅 S. grandis, 棕毛委陵菜 Salsola nairius</td>
<td>64.19 ± 9.96</td>
</tr>
<tr>
<td>砖子山样地</td>
<td>L. chinensis meadow steppe</td>
<td>暗栗钙土</td>
<td>Enclosed grassland</td>
<td>N 43°27'47.7", E 116°38'18.9"</td>
<td>1288</td>
<td></td>
<td>羊草 L. chinensis, 山葱 Allium L., 大针茅 S. grandis</td>
<td>148.66 ± 16.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heavily grazed</td>
<td>N 43°27'06.9", E 116°38'59.6"</td>
<td>1294</td>
<td></td>
<td>羊草 L. chinensis, 松针草 C. squarrosa, 冷蒿 A. frigida</td>
<td>94.14 ± 6.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lightly grazed</td>
<td>N 43°26'41.5", E 116°39'21.6"</td>
<td>1285</td>
<td></td>
<td>松针草 C. squarrosa, 羊草 L. chinensis 冷蒿 A. frigida</td>
<td>76.77 ± 13.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium grazed</td>
<td>N 43°25'40.7", E 116°40'18.3"</td>
<td>1272</td>
<td></td>
<td>冷蒿 A. frigida, 星毛委陵菜 P. acuila, 努鲁克 Carex duricaul</td>
<td>65.01 ± 8.02</td>
</tr>
</tbody>
</table>

UD: 未退化群落，LD: 轻度退化群落，MD: 中度退化群落，HD: 重度退化群落。地上生物量用平均值 ± 标准差表示。UD: Un-degenerated habitat, LD: lightly degenerated habitat, MD: moderately degenerated habitat, HD: heavily degenerated habitat. Above-ground biomass productivity was presented as mean ± standard deviation.
treatments.

We put double layers of filter paper (9 cm diam.) in the bottom of Petri dishes (10 cm diam.) and then added a 3 mL aliquot from one of the SCFE treatments to the paper. Ten radish seeds, or ten wheat seeds, or thirty milk vetch seeds were put into the dishes. Enough dishes were prepared so that each SCFE treatment was applied to 60 seeds/species.

Treated seeds were incubated in darkness at 25°C. Distilled water was added to the dishes as needed to maintain moist conditions. The radish seeds were divided into groups of ten and the germination rate for each group was determined at 12, 16 h and 22 h. Germination rates for wheat and milk vetch were determined in a similar manner except that observations were made at 16, 26, and 40 h. Radish radicle and coleoptile lengths were measured at 48 h; wheat radicle and coleoptile lengths were determined at 64 h; and milk vetch radicle and coleoptile lengths were measured at 94 h. Statistical indices for seed germination and seedling growth were compared using the least significant difference (LSD) test calculated with JMP 4.0 software.

2 Results

2.1 Effect of growth medium composition on the propagation of cultured milk vetch roots

Results indicated that differences in the nutritional components in B₃ media influenced the dry weight of cultured milk vetch roots after 18 d of incubation in a rotary shaker (Fig. 1).

The numerical analysis showing the effect of different nutrient concentrations in the improved B₃ media on milk vetch roots is given in Table 3. Range comparison for the effect of nutrient concentration on the dry weight of cultured roots declined in the order R_5 (0.0756) > R_4 (0.0582) = $R_3 = R_5$ = R_6 = R_4 > R_2 (0.0558) > R_1 (0.0392) > R_3 (0.0364) > R_4 (0.0043) = $R_5 = R_6 = R_7 = R_8$. This indicated that among all the nutritional components tested in this study, Fe²⁺ had the greatest effect on the growth of cultured milk vetch roots. The effects of sucrose, H₂PO₄⁻, Mg²⁺, Mn²⁺, Ca²⁺, Zn²⁺, BO₄⁻, Co²⁺, I⁻, and C₆H₁₂CINO₃ + C₆H₁₈Cl₂N₄O₇ + C₆H₁₂O₇N + C₆H₁₂O₆ were intermediate, and the effects of N, Ca²⁺, MoO₄²⁻ and NAA were lowest.

The results also showed that the dry weight of the cultured roots declined in the order $A_5 > A_2 > A_1$, $B_1 > B_2 > B_3 > C_1 > C_2 > C_3$, $D_1 > D_2 > D_3$, $E_1 > E_2 > E_3$, $F_1 > F_2 > F_3 > G_1 > G_2 > G_3$, $H_1 > H_2 > H_3$, $I_1 > I_2 > I_3$, $J_1 > J_2 > J_3$, $K_1 > K_2 > K_3$, $L_1 > L_2 > L_3$, $M_1 > M_2 > M_3$, $N_1 = N_2 > N_3$, and $O_1 > O_2 > O_3$ (Table 3). From these, we determined that the combination of $A_3B_1C_1D_1E_1F_1G_1H_1I_1J_1K_1L_1M_1N_1O_1$ [3.0% sucrose + 0.510 mmol/L (NH₄)₂SO₄ + 12.380 mmol/L KN₃O₃ + 0.550 mmol/L NaH₂PO₄ H₂O + 0.500 mmol/L CaCl₂ 2H₂O + 0.510 mmol/L MgSO₄ 7H₂O + 0.025 mmol/L FeSO₄ 7H₂O + 62.780 μmol/L MnSO₄ 4H₂O + 0.039 μmol/L CaSO₄ 5H₂O + 1.735 μmol/L ZnSO₄ 7H₂O + 12.095 μmol/L H₂BO₃ + 0.258 μmol/L Na₂MoO₄ 2H₂O + 0.026 μmol/L CoCl₂ 6H₂O + 1.130 μmol/L KI + 2.432 μmol/L C₆H₁₂CINO₃ + 14.825 μmol/L C₆H₁₈Cl₂N₄O₇ + 4.062 μmol/L C₆H₁₂O₇N + 0.278 μmol/L C₆H₁₂O₆ + 1.074 μmol/L NAA] was the optimum improved medium for the propagation of cultured milk vetch roots. Compared to standard B₃ medium, the optimum

http://www.ecologica.cn
<table>
<thead>
<tr>
<th>Soil type</th>
<th>样本数</th>
<th>数值</th>
<th>标准差</th>
<th>分布类型</th>
<th>均值</th>
<th>标准差</th>
<th>最小值</th>
<th>最大值</th>
<th>变异系数</th>
<th>误差</th>
<th>算术 Arithmetic</th>
<th>几何 Geometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>重金属</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>蔬菜地 Vegetable land</td>
<td>62</td>
<td>33.91</td>
<td>13.26</td>
<td>正态 Normal distribution</td>
<td>31.72</td>
<td>1.436</td>
<td>13.83</td>
<td>79.50</td>
<td>39.1</td>
<td>65.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>露天菜地 Uncovered vegetable land</td>
<td>29</td>
<td>24.64</td>
<td>11.40</td>
<td>正态 Normal distribution</td>
<td>23.34</td>
<td>1.336</td>
<td>15.58</td>
<td>80.39</td>
<td>46.3</td>
<td>64.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>小麦/玉米/棉花地 Wheat/maize/cotton land</td>
<td>29</td>
<td>22.08</td>
<td>7.106</td>
<td>正态 Normal distribution</td>
<td>21.07</td>
<td>1.362</td>
<td>13.20</td>
<td>41.72</td>
<td>32.2</td>
<td>28.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然土壤 Natural land</td>
<td>7</td>
<td>21.76</td>
<td>9.022</td>
<td>正态 Normal distribution</td>
<td>20.29</td>
<td>1.526</td>
<td>11.28</td>
<td>35.58</td>
<td>41.5</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>28.57</td>
<td>12.64</td>
<td>对数正态 Logarithm normal distribution</td>
<td>26.43</td>
<td>1.465</td>
<td>11.28</td>
<td>80.39</td>
<td>44.2</td>
<td>69.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>蔬菜地 Vegetable land</td>
<td>62</td>
<td>124.2</td>
<td>71.39</td>
<td>正态 Normal distribution</td>
<td>115.6</td>
<td>1.387</td>
<td>60.2</td>
<td>268.2</td>
<td>57.5</td>
<td>208.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>露天菜地 Uncovered vegetable land</td>
<td>29</td>
<td>83.63</td>
<td>10.11</td>
<td>正态 Normal distribution</td>
<td>81.58</td>
<td>1.144</td>
<td>67.47</td>
<td>111.4</td>
<td>12.1</td>
<td>43.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>小麦/玉米/棉花地 Wheat/maize/cotton land</td>
<td>29</td>
<td>81.48</td>
<td>18.78</td>
<td>正态 Normal distribution</td>
<td>79.59</td>
<td>1.241</td>
<td>57.45</td>
<td>131.1</td>
<td>23.0</td>
<td>73.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然土壤 Natural land</td>
<td>7</td>
<td>73.72</td>
<td>10.93</td>
<td>正态 Normal distribution</td>
<td>73.05</td>
<td>1.160</td>
<td>60.67</td>
<td>82.64</td>
<td>14.8</td>
<td>21.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>103.9</td>
<td>56.1</td>
<td>对数正态 Logarithm normal distribution</td>
<td>80.50</td>
<td>1.257</td>
<td>57.45</td>
<td>627.9</td>
<td>54.0</td>
<td>210.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05; 不同和相同字母分别表示差异显著和不显著 The same letter means no significant difference, and different letter means significant difference.
improved medium contains 3.0% sucrose, 1.074 μmol/L NAA, plus 1/2 strength macronutrient concentration, 1/4 strength microelement concentration (with the exception of MnSO₄ which was full strength), and 1/2 strength basic organic supplements. Culturing 0.1 g (fresh weight) of milk vetch roots on the optimum improved medium for 18 d resulted in the production of 0.2538 g (dry weight) roots.

2.2 Effect of culture filtrate extracts on seed germination and seedling growth of other plant species

2.2.1 Effect of culture filtrate extracts on seed germination of other plant species

Statistical analysis of the germination rate indicated that the SCFE affected seed germination of all three test species (Table 4). However, the effect was not the same for all treatments. The more details can be described as follows;

The SCFE from all treatments inhibited radish germination, but the effect decreased with time. There was no difference among the treatments in radish germination at 22 hours, which suggested that the inhibition effect was disappearing.

Wheat germination was stimulated by SCFE from treatment 1, however, SCFE from treatments 2, 5, 6, and 9 inhibited germination. The SCFE from treatments 3, 4, and 7 initially inhibited wheat germination, but later stimulated germination. Similar to our observation for radish, the effect of SCFE on wheat germination decreased with time. There was little difference in germination rates among the treatments at 40 hours.

The SCFE from treatment 1 sharply stimulated milk vetch germination, but SCFE from all other treatments inhibited milk vetch germination. Large differences in milk vetch germination rates at 40 hours showed that SCFE had a prolonged effect on milk vetch.

2.2.2 Effects of culture filtrate extracts on seedling growth of other plant species

Radicle and coleoptile length were measured for each test species to determine the effect of the SCFE on seedling growth. The results are given in Fig. 2, Fig. 3, and Fig. 4.

![Fig. 2](http://www.ecologica.cn) Effect of SCFE on seedling growth of radish

Data are mean ± SE of 60 replications; The same letters indicate no significant difference at p = 0.05 (LSD). The same pattern is used in Fig. 3 and Fig. 4.

The SCFE from all treatments inhibited the growth of radish radicles (Fig. 2). In contrast, SCFE from treatments 1, 5, 6, 7, 8, and 9 stimulated the elongation of radish coleoptiles. The SCFE from the other treatments inhibited radish coleoptile elongation.

The growth of wheat radicles (especially the longest radicles) was stimulated by SCFE from treatment 1 (Fig. 3). The SCFE from all other treatments inhibited the growth of wheat radicles. The growth of wheat coleoptiles was...
inhibited by SCFE from all treatments. Wheat seedlings treated with SCFE from treatment 1 had the longest radicles and coleoptiles. In contrast, wheat seedlings treated with SCFE from treatment 7 had the shortest radicles and coleoptiles.

Data in Fig. 4 indicated that SCFE from all treatments inhibited the elongation of milk vetch radicles and coleoptiles. However, the degree of inhibition varied among the treatments. For example, SCFE from treatment 7 had a strong inhibitory effect on both radicle and coleoptile elongation. In contrast, the inhibitory effect of SCFE from treatment 1 on radicle and coleoptile elongation was weak.

3 Discussion

3.1 Propagation of cultured milk vetch root and its response to nutrient regulation

Sterile roots cultures are ideal for testing allelopathy in milk vetch. One purpose of this study was to determine the optimum growth medium for the rapid propagation of cultured milk vetch roots. The results suggest that cultured milk vetch roots responded differently to adjustments in the sucrose, macroelement, microelement and organic supplement content in the culture media. Among all nutritional components in the improved Bacon media, Fe^{2+} had the strongest effect on milk vetch root culture. This is consistent with results from previous studies. In contrast, the small effect of MoO_{4}^{2-} on the root cultures is different from the results of Jia et al. [35]. The success of tissue culture depends primarily on having the correct type and amount of hormone, however organic supplements such as C_{6}H_{12}ClNO_{3}, C_{12}H_{18}Cl_{2}N_{4}OS, C_{6}H_{2}O_{2}N and C_{6}H_{12}O_{6} also have an important role. These nutritional compounds

http://www.ecologica.cn
were not studied as individual factors in this experiment, but they will be considered in the future.

Although B₃ medium is generally considered to be the best medium for tissue culture of hedysarum plants\(^{[36]}\), it was not very effective for the culture of milk vetch roots. Results from this study showed that better results were obtained when the nutrient concentration of standard B₃ medium was adjusted in the following way: 1/2 strength macroelement concentration, 1/4 strength microelement concentration (with the exception of MnSO₄ which was at normal concentration), and 1/2 strength basic organic supplements. In addition, 3.0% sucrose and 1.074 μmol/L NAA was added to the growth medium. The concentration of sucrose was very high compared to the relatively low concentration of the other basic nutrients in the medium. This indicates that the successful propagation of cultured milk vetch roots depends highly on the carbon source. Rapid propagation of cultured milk vetch roots was possible when the optimal improved media was used. This is significant because it means that the quantity of milk vetch root that can be produced is large enough for the isolation and identification of allelopathic chemicals.

3.2 Allelopathic effect of cultured milk vetch roots

Though SCFE influenced germination and seedling growth of the selected species, we can not determine if the effect is due to allelopathic effect. It is possible that residual, organic nutrients in the SCFE could have influenced seed germination and seedling growth. Preliminary results showed that the residual organic nutrient content in all SCFEs was extremely low (data omitted) and therefore probably would not have affected seed germination and seedling growth in this study. However, this needs to be investigated more carefully. In this way, we can determine if the influence of SCFE on seed germination and seedling growth of selected species is an allelopathic effect.

Certainly, some new substances could have been excreted during the course of the root culture. Not all treatments had the same effect. It may be that the nutrient content of the culture medium affected the type or amount of allelopathic chemicals excreted by the cultured roots. This suggests that different nutrient combinations can affect the intensity of the allelopathic effect in milk vetch roots, which is consistent with some previous studies\(^{[37,38]}\). The effects of SCFE on seed germination and seedling growth differed significantly between plants species. This must be related to differences in the biological characteristics among the three test species. In addition, the results suggest that the three species have different tolerances to the allelopathic effect of milk vetch root. The effect of SCFE from the culture of milk vetch root on milk vetch seed germination and seedling growth indicated that this plant has an auto-toxicity effect.

3.3 Problems for future research

This work provides important preliminary information regarding the propagation and use of cultured roots for determining allelopathic activity in milk vetch, however several research questions still remain. Specifically, allelopathic chemicals produced by cultured milk vetch roots should be identified in future. Furthermore, allelopathic effects of milk vetch in the natural environment, especially the dynamic variation of allelopathy and the relationship between allelopathy and the environment should be analyzed. The relevance of this study could be enhanced by testing allelopathic activity on receptor species which commonly grow in the same area as milk vetch. In addition, it is important to study the allelopathic effect of milk vetch on some target species (e.g. Stellera chamaejasme). The studies described above would provide significant advancement in the study of allelopathy in milk vetch.

References:

http://www.ecologica.cn

[34] 王梦龙，郑国义，谢秋仁，等. 沙打旺小食心虫防治的研究. 中国草地，2001, 23(3): 38 – 44.

http://www.ecologica.cn