Roost-site selection of Lady Amherst’s pheasant

KANG Ming-Jiang* ZHENG Guang-Mei

Ministry of Education key Laboratory for Biodiversity Sciences and Ecological Engineering College of Life Science Beijing Normal University 100875 Beijing China

Abstract A study on the roost-site selection of Lady Amherst’s pheasant was conducted by radio telemetry systematic searching and tracking at the Lizi Ping Nature Reserve Shimi an Sichuan China from April 2005 to September 2006. At each of the totally 24 roost-sites which we found a round quadrat with r = 7.5 m was set. This was subdivided into four 1 m x 1 m quadrats by marking shrubs and four 0.5 m x 0.5 m quadrats by marking grasses. The variables of roost-trees arbors shrubs and grasses were recorded and 24 no-used sites chosen randomly from 128 samples and 24 day-habitat-sites chosen randomly from 258 samples were sampled as control. We analyzed the data of roost-sites by Principal Component Analysis and compared differences between the roost-sites and the control samples by Independent Samples t-Test. The results showed that the pheasants preferred to roost in conifer trees which are located mostly in conifer and conifer-broadleaf mixed forests. Pairs of Lady Amherst’s pheasants preferred to roost closely in the same tree with the male upper and the female underneath during the breeding period. With the PCA we found that the roost-site was significantly affected by the topography roost-tree concealment and shielding conditions. Compared with no-used sites the roost-sites had lower sparser trees and fewer fallen wood environments Also compared with habitat-sites the roost-sites had less-cover shrub-grass environments.

http://www.ecologica.cn
栖息地是鸟类在其某一生活史阶段所占据的活动场所,可提供充足的食物资源、适宜的繁殖地点以及隐蔽场所等能保证生存和繁衍的基本条件。栖息环境间的差异会影响鸟类的分布范围、种群密度及其生存与繁衍。夜栖地是动物夜间栖息的场所,是栖息地的一部分,对夜栖地的利用也是栖息地利用的一种重要形式。适宜的夜栖地更有利于资源利用,对鸟类的空间活动发挥着重要的作用。开展鸟类夜栖地的研究有助于加深对鸟类栖息地利用的理解,其结果对于鸟类的保护具有重要的参考价值。

白腹锦鸡主要分布于我国西藏东南部、四川西南部、贵州西部、广西西部和云南大部分地区,以及缅甸北部和东北部。由于适宜栖息环境不断恶化和减少,人类偷猎盗杀现象严重,致使种群数量稀少,已被列为易危物种,是国家一级重点保护野生动物。

对雉类夜栖地的研究方面,国内仅见褐马鸡、白马鸡、白冠长尾雉、白颈长尾雉和黑颈长尾雉等的报道,国外则多为松鸡科鸟类。白腹锦鸡是典型的林栖雉类,迄今尚无对其夜栖地的深入研究,仅在繁殖生态、食性和生物学特征研究中对夜栖情况有简单描述。本文通过研究白腹锦鸡夜栖地选择的主要影响因素,为该物种的保护提供基础性资料。

研究地区和方法

研究地区

研究地点位于四川省石棉县公益海,海拔1800~2500m,属亚热带季风气候类型,年均温约11.7~14.4℃,年降水量800~1250mm,乔木多为次生林,以人工针叶林和针阔混交林为主,主要为杉木、铁杉、云南松、马尾松、青冈、蛮青冈、木姜子、糙皮桦和栓皮栎等。灌木高而密,以华西箭竹、糙花箭竹和冷箭竹等为主,分布很广。草本层盖度较大。

研究方法

数据收集于2005年4月至2006年9月,采用系统搜索法和无线电遥测追踪法在白腹锦鸡活动区内寻找有羽毛和密集粪便的地点以确定夜栖地。系统搜索法是应用GPS将白腹锦鸡活动区划分为不同小区,每月在每个小区内以不同路线(“S”形)搜索2次以上,寻找其夜栖地点。在繁殖期通过晨昏啼叫和跟踪确定雄鸟夜栖地点,并通过粪便确定夜栖树。雄鸟粪便较雌鸟的粗长,差异显著,故可辨别出同栖一树的成对繁殖鸟的雌雄鸟栖位。依据乔木特征将植被环境分为针叶林、阔叶林和针阔混交林三种类型。夜栖地特征的测量是以夜栖树为中心做10m的大样方,确定植被类型,测量海拔、坡位、坡向、坡度、最近乔木距离、最近乔木胸径、乔木种类、乔木密度、乔木高度、乔木胸径、乔木盖度、倒木数和落叶盖度等参数;随机在其中做3×3个小样方测量灌木、4×4×4个小样方测量草本植物。将植被垂直盖度划分为乔木层盖度、灌木层盖度和草本植物盖度。在小样方中,分别测量草本植物和灌木的种类、数量和盖度。坡位指活动地点所在山坡的位置,分为上坡位、中坡位和下坡位,取值分别为1、2和3。坡向指活动点所在山坡正对的方向,0°为正北方,取值为自正北方向顺时针旋转至山坡正对方向时指针所转过的度数,通过指北针测量获得。在研究区无白腹锦鸡活动环境内选择类似乔木为中心做对照样方,在其活动区内以所发现的个体频繁活动地点为中心做日栖地样方,用同样方法收集相关数据,然后分别随机选取与夜栖地等数量样方进入下一步分析,并测量白腹锦鸡栖树的特征变量:栖树高度、栖树胸径、栖枝高度、栖枝上方盖度、栖枝下方盖度和到最近水源的距离。

数据分析

栖息地研究的定量化要求获取大量与栖息地有关的变量,以全面地解释栖息地特征。然而,随着变量的增加,统计分析的难度也会增加。因此,选择合适的方法进行数据分析至关重要。本文采用多元回归分析方法,以考察夜栖地特征与白腹锦鸡夜栖地选择的相关性。研究结果表明,夜栖地特征包括植被类型、海拔、坡位、坡向、坡度、最近乔木距离、最近乔木胸径、乔木种类、乔木密度、乔木高度、乔木胸径、乔木盖度、倒木数和落叶盖度等变量对白腹锦鸡夜栖地选择有显著影响。其中,乔木类型和乔木密度是影响夜栖地选择最重要的两个因素。
增加也增加了分析问题的复杂性。主成分分析（PCA）是基于人们一直所期望的、用少数变量来说明原需许多变量才能说明的问题这样一种思想基础上产生的，即根据相关性大小把变量分组，使得同组内的变量相关性较高，不同组变量间的相关性较低。从而使原需由几个变量说明的问题改由“组”去阐明，这些组就称之为因子（factor）。本研究中应用主成分分析将夜栖地参数归纳为9类主要因子，以阐述白腹锦鸡对生境的利用和选择情况。灌木草本植物的测量是将大样方中的8个灌木小样方和8个草本植物小样方中所测得数值的平均值作为该夜栖地的生境分析参数。分析各变量在夜栖地与不同对照样方的差异时，先用Kolmogorov-Smirnov test检验数据是否符合正态分布。当数据符合正态分布时，使用独立样本的Mann Whitney U检验；当数据不符合正态分布时，使用Mann Whitney U检验。由于坡向值为圆形数据，取余弦值后，即将负数转化为正数后同其他数据一同处理分析。数据采用表示。

结果与分析

夜栖地特征
所发现的78处白腹锦鸡夜栖地点有9处位于针阔混交林中（F8E）; 4处于针叶林（99E）; 9处于阔叶林（B9E）。栖树中有77棵为马尾松; 7棵麦吊云杉（$%&'()*(&+,!,-（25）; 7棵铁杉; 6棵丰实箭竹（.(*0%-（1'*(#）; 其他G棵为木姜子、蛮青冈、糙皮桦等阔叶树。共有8棵为繁殖期成对个体共栖树，雄高雌低，栖枝相距（B& H C I& 70）; 高差（B& 8 C I& 80）。（HKE，2J B9）。

应用主成分分析确定影响白腹锦鸡夜栖地选择的主要因子和栖树因子（表9）。前9个因子的累积贡献率达到98%，包含了夜栖地变量的大部分信息，能够较好的反映白腹锦鸡的夜栖地特征。因子1主要包含坡度、距水源距离、栖枝高度、栖树高度和胸径因素，表明白腹锦鸡喜好坡度较缓、距水源稍远的环境; 夜栖树较高、粗，冠层较高，可归为地形和栖树因子。因子7主要包含乔木密度和乔木层、灌木层、草本层的盖度，表明白腹锦鸡选择乔木较稀疏，乔木层和灌木层盖度较大，草本植物盖度较小的生境，为隐蔽因子。因子9主要为栖枝上方盖度，较大的盖度增加遮蔽程度，利于阻风挡雨，为遮蔽因子。

<table>
<thead>
<tr>
<th>表1</th>
<th>Principal component analysis of roost-site parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat parameters</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Slope degree</td>
<td>23 ± 3</td>
</tr>
<tr>
<td>Tree density /177m²</td>
<td>30 ± 4</td>
</tr>
<tr>
<td>Arbor cover (%)</td>
<td>64 ± 6</td>
</tr>
<tr>
<td>Shrub cover (%)</td>
<td>17 ± 1</td>
</tr>
<tr>
<td>Grass cover (%)</td>
<td>17 ± 2</td>
</tr>
<tr>
<td>Roost-tree height [m]</td>
<td>10 ± 0.4</td>
</tr>
<tr>
<td>Tree diameter at breast height [cm]</td>
<td>22 ± 2</td>
</tr>
<tr>
<td>Roosting height [m]</td>
<td>5 ± 0.3</td>
</tr>
<tr>
<td>Upper cover (%)</td>
<td>78 ± 3°</td>
</tr>
<tr>
<td>Distance to water [m]</td>
<td>85 ± 10 **</td>
</tr>
<tr>
<td>Total</td>
<td>35.781</td>
</tr>
<tr>
<td>Percent of variable (%)</td>
<td>35.781</td>
</tr>
</tbody>
</table>

n = 24 * n = 19 ** n = 11

2.2

结果与分析

在研究区内无白腹锦鸡活动的环境内测量对照样方27F个，随机选择其中78个与夜栖地参数比较（表7）。与对照样方相比，白腹锦鸡的栖树较近处有稍细的乔木，选择稍低而稀疏的乔木、少量倒木、低而盖度较小草本植物的环境。白腹锦鸡主要选择山坡中（HGE）、下（7KE）部夜栖（!7J B8& 7@I）。

http://www. ecologica. cn
Table 2 Comparison of habitat variables between roost and random sites

<table>
<thead>
<tr>
<th>Habitat variables</th>
<th>Roost-site (n = 24)</th>
<th>Control samples (n = 24)</th>
<th>t-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SE</td>
<td>Range</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Distance to the nearest tree [m]</td>
<td>1.31 ± 0.18</td>
<td>0.1 – 4.0</td>
<td>1.73 ± 0.12</td>
</tr>
<tr>
<td>Tree density [177 m²]</td>
<td>29.92 ± 4.19</td>
<td>2 – 69</td>
<td>43.46 ± 6.00</td>
</tr>
<tr>
<td>Arbor height [m]</td>
<td>8.35 ± 0.33</td>
<td>3 – 11</td>
<td>10.17 ± 0.37</td>
</tr>
<tr>
<td>Number of fallen trees</td>
<td>1.29 ± 0.25</td>
<td>0 – 5</td>
<td>4.21 ± 0.65</td>
</tr>
<tr>
<td>Grass height [cm]</td>
<td>9.13 ± 0.88</td>
<td>3 – 20</td>
<td>13.25 ± 1.40</td>
</tr>
<tr>
<td>Grass cover [%]</td>
<td>16.67 ± 2.05</td>
<td>5 – 40</td>
<td>25.00 ± 2.89</td>
</tr>
</tbody>
</table>

* P < 0.05

Table 3 Comparison of habitat variables between roost and day – habitat sites

<table>
<thead>
<tr>
<th>Habitat variables</th>
<th>Roost-site (n = 24)</th>
<th>Day-habitat-site (n = 24)</th>
<th>t-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SE</td>
<td>Range</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Shrub Height [cm]</td>
<td>160.6 ± 13.8</td>
<td>70 – 350</td>
<td>222.5 ± 23.0</td>
</tr>
<tr>
<td>Shrub cover [%]</td>
<td>16.63 ± 1.44</td>
<td>5 – 30</td>
<td>38.54 ± 3.41</td>
</tr>
<tr>
<td>Number of the grass species</td>
<td>7.13 ± 0.35</td>
<td>3 – 10</td>
<td>9.04 ± 0.54</td>
</tr>
<tr>
<td>Grass density [20.25 m²]</td>
<td>7.75 ± 1.35</td>
<td>1 – 30</td>
<td>15.58 ± 1.88</td>
</tr>
<tr>
<td>Grass height [cm]</td>
<td>9.13 ± 0.88</td>
<td>3 – 20</td>
<td>15.21 ± 1.34</td>
</tr>
<tr>
<td>Grass cover [%]</td>
<td>16.67 ± 2.05</td>
<td>5 – 40</td>
<td>33.13 ± 2.37</td>
</tr>
</tbody>
</table>

* P < 0.05
山鹑（Perdix perdix）的集群地面夜栖，其集群大小一般介于5只到15只，偶尔达到20只。山鹑的夜栖地点主要位于开阔的灌木丛中，通常位于灌木丛的下层，距离地面约20-30厘米。

【参考文献】

参考文献:

http://www.ecologica.cn