Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplant

GAO Zhi-Kui1,* GAO Rong-Fu2† ZHANG Jun-Ping† WANG Mei† ZHONG Chuan-Fei2

1 College of Horticulture, Agriculture University of Hebei, Baoding 071001, China
2 College of Biology, Beijing Forestry University, 100083, China

Abstract In the relationship between photosynthesis and environmental factors or biochemical factors or between stomatal limitation and non-stomatal limitation in depression of photosynthesis at noon, photosynthetic simulations by a mathematical model or a regression equation between net photosynthetic rate \(Pn \) and intercellular \(CO_2 \) concentration \(Ci \) or other environmental factors including photosynthetic available radiation \(PAR \), air temperature \(Ta \), ambient \(CO_2 \) concentration \(Ca \) and relative humidity \(Hr \) or FvCB model \(\text{Farquhar-von Caemmerer-Berry} \) biochemical model of leaf...
photosynthesis were analysed. The model examined the response curve of net photosynthesis Pn and intercellular CO$_2$ concentration [Ci] measured under treatments of combined photosynthetic available radiation [PAR] and leaf temperature [T] over a photosynthetic diurnal course measured under 1100 ± 100 μL/L CO$_2$ enrichment in greenhouse microclimates on eggplant Solanum melongena L. F$_1$ hybrid ‘QIEZA-1’. The parameters of Pn [PAR] Ta [Tl] leaf temperature [Ca] [Ci] and Hr were measured with a CI-301PS photosynthesis analyzer. In terms of either response of Pn on Ci or photosynthetic diurnal course the mathematical model imitated measured Pn much better than the FvCB model. The simulation by the mathematical model indicated that photosynthetic diurnal course could be influenced by both a single environment factor and complex ones. The simulation of the FvCB model showed that a dominant role of the rate of carboxylations changed from one to another among A_i [A,j] and A_j as Ci increased combined with increase of PAR and Tl. A_j was limited by the amount of activation state and kinetic properties of ribulose-1-5-bisphosphate carboxylase/oxygenase [rubisco]. A_i was limited solely by the rate of ribulose-1-5-bisphosphate [RuBP]. A_i was limited by the rate of triose-phosphate utilisation [TPU]. C_{ij} intercellular CO$_2$ concentration of the change point of dominance from A_i to A_j was a higher under high PAR and Tl than low PAR and Tl. C_{ij} and $C_{ij,j}$ intercellular CO$_2$ concentration of the change point of dominance from A_j to A_i was influenced more strongly by Tl than PAR. The FvCB model also indicated that the limiting carboxylation rate was A_j in the early morning and toward evening and it was A_i in the late morning and at noon. Period of A_i limitation might be extended by cloudy weather and CO$_2$ injection once per day. A_j limitation occurred with application of CO$_2$ injection twice a day.

Key Words greenhouses, eggplant, CO$_2$ enrichment, photosynthetic diurnal course, biochemical model of leaf photosynthesis
5 CO2 CO2 enrichment CO2 ambient
20 min CO2 1000 ~ 1200 µL/L CO2 2 ~ 3 d
1 Ce 1050 µL/L Ce 950 µL/L

1.2

Cl-301PS PAR T Ta TL
3 ~ 4 3 PAR TL CI-301PS PAR TL
I 1600 µmol/m2 s B6. 6 °C 29. 6 °C III 1600 µmol/m2 s 20. 0 °C 500 µmol/m2 s 20. 0 °C CO2

1.3

C3 FvCB Rubisco Hans

2.1

Pn Ci FvCB

Pn = 2 \times 10^{-10} \cdot Ci^3 + 3 \times 10^{-7} \cdot Ci^3 + 6 \times 10^{-5} \cdot Ci^2 + 0. 0975 \cdot Ci = 5. 9798

2.2 FvCB

CO2
因子（光强、气温、饱和气压差、空气相对湿度）进行逐步回归分析发现，四元一次四互作加效应回归模拟方程（1）经测验呈极显著水平，相关度达到 0.9375。
短的限制时段(图34)。多云天气下，由于日照强度较低，短的限制时段延长。阴天天气的日照强度更低，短的限制时段延长至全日程。在所有日变化进程中，只有冬季0次增施120的出现短的限制时段。

图34增施与不增施120下温室茄子实测光合速率%&或数学模型模拟%&的日进程。

图C4温室茄子秋冬春实测光合速率%&日进程与5617模型模拟同化速率!

图D45617模型中120增施温室茄子羧化速率的日进程(1'0EEFGFEG00)。

近0E-来，光合气孔限制和非气孔限制的关系，一直是植物光合午睡现象研究中的焦点问题【。

等在%/01.2031.叶片发生光合中午降低现象时!/4降低的现象【。

本试验研究采用5617模型模拟温室茄子光合日变化(图D M图/)

△ Fig. 5 Diurnal course of photosynthesis Pn measured and Pn' imitated by mathematical model or A imitated by Farquhar's model in greenhouse under CO2 enrichment or ambient on eggplant

△ Fig. 6 Correlations between assimilation A imitated by FvCB's model and diurnal photosynthesis Pn measured in greenhouse eggplant in the autumn, winter and spring

△ Fig. 7 FvCB □□□ CO2 □□...
鲁比的浓度处于变化的节点。

在晴天上午和中午前后

1.2.2.1 晴天上午和中午后

1.2.3.1 晴天上午和中午后

鲁比的浓度处于变化的节点。

参考文献:

