CO₂ \[\text{Ginkgo biloba}\]

\[\text{Effects of elevated CO}_2\text{ on lipid peroxidation and activities of antioxidant enzymes in Ginkgo biloba}\]

RUAN Ya-Nan\(^{1,2}\) HE Xing-Yuan\(^3\) CHEN Wei\(^4\) XU Sheng\(^4\) XU Wen-Duo\(^4\)

1 Institute of Applied Ecology\[Chinese Academy of Sciences\] Shenyang 110016\[China\]

2 Liaoning University\[Shenyang 110036\[China\]

Acta Ecologica Sinica\[2007\[27\[1106 – 1112\]

Abstract\[To study the impact of elevated atmospheric CO₂ concentrations on activities of anti-oxidative enzymes and lipid peroxidation of trees\[the superoxide anion \[O}_2^-\text{ generating rate}\; \text{malondialdehyde \[MDA\] content}\; \text{activities of superoxide dismutase \[SOD\] ascorbate peroxidase \[APX\] and glutathione reductase \[GR\] and ascorbic acid \[ASA\] content were periodically analyzed in leaves of Ginkgo biloba exposed in open – top chambers to either ambient \[=350\text{µmol \text{m}^{-2} \text{s}^{-1}}\] or elevated \[700\text{µmol \text{m}^{-2} \text{s}^{-1}}\] CO₂ concentrations in urban area for a growing season. The results show that elevated CO₂ exposure in the short – term reduced generating rate of superoxide anion radical and content of hydrogen peroxide. Malondialdehyde \[MDA\] content as an index of lipid peroxidation was also decreased. The activities of SOD\; APX and...\]

\[\text{Foundation item}\[The project was supported by National Natural Science Foundation of China \[No. 90102004\] Foundation of Knowledge Innovation Program of Chinese Academy of Sciences \[No. kzc3-sw-436\] Innovation Program of Institute of Applied Ecology\[Chinese Academy of Sciences\No. SLYQY0414\]

\[\text{Received date}\[2005-12-30\] \[\text{Accepted date}\[2007-01-12\]

\[\text{Biography}\[RUAN Ya-Nan\] Ph. D. mainly engaged in urban forest ecology. \text{E-mail}\[manyanan@163. com\]

* Corresponding author. E-mail\[uforest@163. com\]
GR and ascorbate content were increased by high CO$_2$ exposure. However the results were reversed by the long-term elevated CO$_2$ exposure. Generating rate of superoxide anion radical and content of hydrogen peroxide slight increased the activities of SOD, APX and GR tiny declined and ASA content increased. These results were not significant difference compared to control. It is concluded that the activities of antioxidant system in *Ginkgo biloba* increased and the ability of scavenging reactive oxygen enhanced. However the antioxidant ability might be declined by the long-term high CO$_2$ exposure.

Key Words *Ginkgo biloba* elevated CO$_2$ concentration anti-oxidantive enzymes level of reactive oxygen
1.2.3 1g ASA 5 ml 5% TCA 4℃ 20000 g 10 min ASA Arakawa 0.4 OD530

1.2.4 0.5 g 50 mmol L⁻¹ EDTA 25% Triton X-100 1 mmol L⁻¹ EDTA 0.25% TritonX-100 mmol L⁻¹ ASA 4% PVP 0 20min Nakamo Asada APX 290nm 6.2 mmol/L⁻¹ cm⁻¹

1.2.5 3.5 ml pH7.6 1 mmol L⁻¹ EDTA 1 mmol L⁻¹ ASA 4% PVP 16000g 4℃ 20min SOD APX 2:38

Table 1 Effects of elevated CO₂ exposure on growth parameters of Ginkgo biloba

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time [d]</th>
<th>Axial shoot [cm]</th>
<th>Lateral shoot [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Ambient</td>
<td>20</td>
<td>25.10 ± 5.39</td>
<td>19.59 ± 3.75</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>33.67 ± 5.69</td>
<td>25.63 ± 3.46</td>
</tr>
<tr>
<td></td>
<td>20 - 90</td>
<td>8.57 ± 1.01</td>
<td>6.04 ± 2.23</td>
</tr>
<tr>
<td>CO₂ Elevated</td>
<td>20</td>
<td>25.0 ± 3.91</td>
<td>20.05 ± 1.59</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>37.33 ± 3.06</td>
<td>30.63 ± 4.54</td>
</tr>
<tr>
<td></td>
<td>20 - 90</td>
<td>12.33 ± 1.26</td>
<td>10.58 ± 3.48</td>
</tr>
</tbody>
</table>

Means ± S. D. [n = 4 ~ 8]

2.2 50d 60d 60d 60d 80 ~ 90d 0.733 >0.05 1MDA 2MDA 3MDA 4MDA 5MDA 70d CO₂ 70d CO₂ ASA

2.3 CO₂ 60d 60d 60d 60d 60d 60d 60d MDA 1MDA 2MDA 3MDA 4MDA 5MDA

2.4 CO₂ 10d 10d 10d 10d 10d 10d 10d 80 ~ 90d
高浓度 CO₂ 升华对植物抗坏血酸含量的影响。结果表明，高浓度 CO₂ 使植物抗坏血酸含量增加，但在试验末期增加趋势减弱。

图 1 CO₂ 浓度倍增对银杏叶片超氧化物歧化酶（SOD）活性变化。在高浓度 CO₂ 处理前，处理植株的 SOD 活性上升，之后上升幅度虽略有下降，但一直高于对照植株。在 CO₂ 浓度倍增熏蒸的银杏叶片 SOD 活性与产生速率相关达到极显著水平（图 2）。这些结果表明，CO₂ 浓度倍增短期处理可以使银杏叶片 SOD 活性上升对活性氧的清除能力增强；但在处理后期 SOD 活性略有下降，较长期的高浓度 CO₂ 处理对银杏的抗氧化能力有所影响。

在植物细胞中，SOD 利用抗坏血酸为电子供体将 H₂O₂ 转化为 H₂O。CO₂ 浓度倍增浓度处理银杏幼树的 SOD 活性与对照相比无明显变化；但随着熏蒸时间的延长，处理植株 SOD 活性迅速上升，显著高于对照（图 3）。但 J!9 时 SOD 活性达到最高点，之后高浓度 CO₂ 处理银杏 SOD 活性迅速下降，与对照之间差异不显著，而且在 C!9 之后 SOD 活性低于对照，K!9 时显著低于对照（图 4）。短期内高浓度 CO₂ 熏蒸能够提高植物 SOD 活性，但试验后期 SOD 活性不再上升甚至下降。
谷胱甘肽还原酶活性变化（GR）通过参与抗坏血酸（Vc）谷胱甘肽循环而在细胞活性氧的清除中起重要作用。图表显示，在高浓度CO₂熏蒸处理后，GR活性高于对照。在处理后，GR活性略低于对照。但经方差分析，整个生长季内只有在高浓度条件下银杏GR活性显著高于对照。说明在银杏对浓度增的反应并不敏感。

图0“浓度倍增对银杏叶片GR活性的影响”

结论与讨论

大气中CO₂浓度升高增加了植物中的羧化反应，同时碳的净同化作用也增加了，光合产物也相应增加，植物生长速度加快。高浓度条件下银杏的主枝、侧枝生长量都比在正常浓度下植株增加。

作为光合作用反应底物，CO₂浓度的高低可以影响GH5<:=的活性及催化方向，调节电子传递速率和不同支路之间的比例，因此浓度倍增不仅可以影响植物的光合作用而且可以调节活性氧的代谢状态。

本试验发现，短期内倍增条件下生长的银杏叶片的超氧产生速率低于对照（试验后期除外）。浓度升高能够增强植物光合作用，光合碳水化合物的增加可以提高作为电子受体的K1L2的利用率，因而限制了电子传给分子氧的流量。N9@E9?反应被抑制，毒性的O·产生率减少。

生物细胞膜发生膜脂过氧化的一个主要机制是活性氧自由基（Vc）诱发膜脂不饱和脂肪酸发生连锁的过氧化反应，使脂肪酸发生降解，产生脂质过氧化物。丙二醛（MDA）含量是反映膜脂过氧化作用强弱的一个重要指标。与对照相比，倍增条件下生长的银杏叶片的MDA含量显著下降。MDA含量与O·产生速率显著正相关。在浓度倍增条件下银杏膜脂过氧化程度减弱，说明在一定期间内高浓度对防护银杏的氧化损伤具有一定的作用。在植物体正常代谢过程中亦有Vc产生，活性氧的清除主要由抗氧化物质和保护酶系统来完成的。抗坏血酸（Vc）在Vc%#JR循环中发挥重要作用，它能清除有机自由基和O·，也能直接清除O·。J:@SB>T等研究表明，高浓度条件下橡树Vc含量无明显变化，N9:U99等报道高浓度使小麦Vc含量降低。而在本试验中，银杏Vc对高浓度反应敏感，在处理前期Vc含量显著增加，而且抗坏血酸过氧化物酶（APX）活性也相应升高。以分子Vc为底物将O作为电子受体的APX还原为O，因此高活性APX是与高Vc含量相一致的。U9>等报道，高浓度下银杏APX含量无变化，而且APX活性较低。谷胱甘肽还原酶（GR）利用K1L2为电子供体再生谷胱甘肽。浓度倍增使银杏GR活性略有升高，但与对照之间差异不大。当生存环境改变时，GR活性通常不能升高两倍以上，有时甚至不升高。J(L作为植物抗氧化系统的第一道防线在生体物中普遍存在。高浓度条件下，J(L活性与O·产生速率显著相关。抗坏血酸谷胱甘肽循环（Vc%#JR :D:E9）则负责清除O·，需要和它协作来共同完成清除活性氧和自由基的任务。
化学酶活性。因此抗氧化酶对活性氧的清除能力增强，细胞内活性氧含量降低，对细胞的攻击能力减弱。

在高浓度条件下银杏的抗性增强，膜脂过氧化程度降低可能是由于高浓度

膜脂过氧化损伤，并促进银杏的生长。但较长期高浓度

1

短期(大约两个月)的

发现高浓度

浓度倍增对城市银杏(生长季的大部分时间内

使用卡尔文循环和光合作用促进植物生长。尽管总的生长量

和

条件则可能使此效果发生逆转。尽管总的生长量

酶活性都比对照略有升高，而

NAIPX

GR

CO₂

CO₂

O₂⁻

CO₂

PS I

NADP⁺

ASA-GSH

SOD

MDA

ASA

SOD

GR

CO₂

CO₂

O₂⁻

