杉木（Cunninghamia lanceolata）连栽地力退化和杉阔混交林的土壤改良作用

罗云建, 张小全

（中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091, China）

摘要: 收集了有关杉木连栽地力退化和杉木人工林随代数的增加呈现容重变大的趋势, 代比平均增加。这种容重的变化使看似具有可比性的对比样地之间失去了可比性, 可能导致对杉木连栽人工林地力退化和杉阔混交林的土壤改良作用产生偏差。通过对这种容重变化产生的影响进行校正, 对杉木连栽人工林地力退化和杉阔混交林的土壤改良作用进行了重新评估。结果表明, 采用固定深度采样的杉阔混交林与对照的杉木纯林、多代连栽杉木人工林不同代次间土壤有机碳和全氮贮量的相对变化均出现不同程度的低估现象。固定深度采样时, 与对照的纯林相比, 杉阔混交林对土壤的改良作用被低估, 土壤有机碳和全氮贮量的相对变化平均低估。杉木连栽引起的地力退化也被低估, 土壤有机碳和全氮贮量从代到代分别低估, 从代到代分别低估。经检验表明, 杉阔混交林与对照的杉木纯林、多代连栽杉木人工林不同代次间土壤有机碳和全氮贮量的相对变化在土壤容重影响校正前后有明显差异。

关键词: 容重影响; 杉木; 连栽; 退化; 混交

The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved

LUO Yun-Jian† ZHANG Xiao-Quan *

Key Laboratory of Forest Ecology and Environment, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China

Abstract: Soil degradation in the successive rotations of Chinese fir [Cunninghamia lanceolata] and the soil improvement of the mixed plantations of Chinese fir and broad-leaved species have been widely reported. However, changes in soil bulk density are usually reported at the same times. We collected soil bulk density, soil organic carbon and nitrogen data from paired site studies of successive rotations of Chinese fir and mixed plantations. Our analyses found that soil bulk density of mixed plantation was 5% smaller than that of pure Chinese fir plantation and the soil bulk density of Chinese fir plantation increased by 6% and 9% from the 1st rotation to the 2nd rotation and from the 2nd rotation to 3rd rotation respectively. The changes in soil bulk density may cause significant errors when assessing soil fertility among different rotations and...
planting models because the comparability of the paired sites was lost. In this paper, we tried to re-assess the changes in soil organic carbon and nitrogen among different successive rotations of Chinese fir plantations and mixed plantation of Chinese fir and broad-leaved trees by eliminating the impacts of soil bulk density. Results showed that soil amelioration of mixed plantations and the soil degradation of successive rotations of Chinese fir plantation were underestimated. Comparing to Chinese fir pure plantation relative changes of soil organic carbon and total nitrogen stocks in mixed plantations were underestimated by 6% and 5% respectively. Relative changes of soil organic carbon and total nitrogen stocks were significantly underestimated by 5% and 7% from the first rotation to the second rotation and 7% and 8% from the second rotation to the third rotation respectively.

Key Words changes in soil bulk density Chinese fir successive rotation soil degradation mixed plantation

Cunninghamia lanceolata Lamb. Hook. 1239.1 hm² 26.55% 0.94 0.54 15 20 [37-71]

SOC = \sum_{i=1}^{n} \text{SOM}_i \cdot D_i \cdot BD_i / 1.724

2

2.1

SOC \text{ g cm}^{-3} \text{ BD} i \text{ g cm}^{-3} \text{ BD} i \text{ g cm}^{-3} 1.724

p = 0.05
土壤容重影响的校正方法

采用“#$$%&’等的计算同等质量下土壤元素贮量的方法，即首先计算每一层的土体质量(*·+，-)·.，确定最大的累积土体质量(标准土体质量)，则对累积土体质量较小的样地，做累积土体质量与累积土壤元素贮量的相关曲线，然后外推至标准土重时的土壤元素贮量。

当采样层数较少时，累积土重(*"’#$$%&’与累积元素贮量(“#$%&’成线性关系:

式中，和+为参数。然而，随着采样层数的增加，累积土重与累积元素贮量的关系可能会呈现明显的非线性关系，则可以通过对累积元素贮量取对数的方式降低曲线的曲率，再用上述方法外推得到标准土重时的土壤某种元素的贮量。

对分层采样得到的每层土壤容重，采用整个采样剖面的加权平均容重(即以每个采样层的厚度为权)来比较对比样地间容重的相对变化。

图10杉阔混交林和杉木纯林土壤容重的变化

校正前后杉木人工林碳氮贮量的变化

杉木混交林

土壤容重的变化

杉阔混交林的平均土壤容重总体上比杉木纯林的要低，少部分数据，出现反常，杉阔混交林容重平均比杉木纯林降低。图1/0

校正前后杉阔混交林和杉木纯林土壤有机碳和全氮贮量的变化

校正前杉阔混交林土壤有机碳和全氮贮量分别比杉木纯林提高和E! /DB C (! EAB (和E! /DB C
剔除容重的影响后分别提高/M! F.B C M! (@B (和/M! MMB C @! @MB (。因此，固定深度采样时，与纯林对照样地相比，杉阔混交林对土壤的改良作用被低估，土壤有机碳和全氮贮量的相对变化平均低估了@! (FB C .! /(B (和

采用配对数据的N检验表明，单侧\-值均小于显著性水平F! F@)，为此拒绝F，即容重影响校正前后杉阔混交林和纯林土壤有机碳和全氮贮量的相对变化有明显差异(表/0)。
3.2 多代连栽杉木人工林

3.2.1 土壤容重的变化

随着连栽代数的增加，土壤容重出现不同程度的增加，代比代平均增加 \(\%\) 代比代平均增加 \(\%\) 图（图 2）。

表 1 校正前后土壤有机碳和全氮贮量变化的差异性检验

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>Variance</th>
<th>(H_0)</th>
<th>Degree of freedom</th>
<th>(t)</th>
<th>(P) value</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>18.02</td>
<td>1116.26</td>
<td>0</td>
<td>55</td>
<td>5.1631</td>
<td>0.000</td>
<td>0.05</td>
</tr>
<tr>
<td>Before correction</td>
<td>12.32</td>
<td>923.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>13.88</td>
<td>454.26</td>
<td>0</td>
<td>55</td>
<td>4.1371</td>
<td>0.000</td>
<td>0.05</td>
</tr>
<tr>
<td>Before correction</td>
<td>9.14</td>
<td>431.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 结论与讨论

杉阔混交林林地的平均土壤容重平均比杉木纯林降低。随着连栽代数的增加，土壤容重出现不同程度的增加，代比代平均增加 \(\%\) 代比代平均增加 \(\%\)。利用上述土壤容重影响的校正法，消除土壤容重的影响后，结果表明，采用固定深度采样的杉阔混交林和对照的杉木纯林、多代连栽杉木人工林不同代次间土壤有机碳和全氮贮量的相对变化均出现不同程度的低估现象。固定深度采样时，与对照的纯林相比，杉阔混交林对土壤的改良作用被低估，土壤有机碳和全氮贮量的相对变化平均低估 \(\%\)；杉木连栽引起的地力退化也被低估，土壤有机碳和全氮贮量从 \(\%\) 代到 \(\%\) 代分别低估 \(\%\) 代到 \(\%\) 代分别低估 \(\%\)。经 \(\%\) 检验，杉阔混交林和对照的杉木纯林、多代连栽杉木人工林不同代次间土壤有机碳和全氮贮量的相对变化在土壤容重影响校正前后有明显差异（表 1）。
Table 2 Significance tests of changes in SOC and TN stocks before and after correction

<table>
<thead>
<tr>
<th>Item</th>
<th>SOC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Variance</td>
</tr>
<tr>
<td>From 1st to 2nd rotation</td>
<td>-11.01</td>
<td>98.81</td>
</tr>
<tr>
<td>From 3rd to 4th rotation</td>
<td>-17.90</td>
<td>383.86</td>
</tr>
<tr>
<td>From 5th to 6th rotation</td>
<td>-11.15</td>
<td>576.82</td>
</tr>
<tr>
<td>From 1st to 2nd rotation</td>
<td>-8.57</td>
<td>72.57</td>
</tr>
<tr>
<td>From 3rd to 4th rotation</td>
<td>-23.03</td>
<td>152.03</td>
</tr>
<tr>
<td>From 5th to 6th rotation</td>
<td>-14.72</td>
<td>283.76</td>
</tr>
</tbody>
</table>
References

Cunninghamia lanceolata

杉木深山含笑混交林土壤肥力的研究

福建含笑

杉木薏米复合经营模式土壤肥力的研究

杉木巨尾桉混交林林分生物量及土壤肥力研究

森林土壤分析方法

观光木杉木混交林水文特征研究

杉木混交林的效益及机理分析

杉木连栽林地质量评价的初步研究

江西大岗山连栽杉木人工林土壤性质的变化

不同栽杉代数林分水源涵养功能的分析

杉木迹地连栽与改植秃杉的效果分析

不同栽植代数杉木人工林土壤肥力的比较研究

杉木人工林连作生物生产力的研究

多代杉木人工林生长发育效应的研究

杨玉盛,陈光水,彭加才,等

周学金,罗汝英,叶镜中

张家城,盛炜彤,聂道平,等

俞元春,邓西海,盛炜彤,等

马祥庆,范少辉,刘爱琴,等

杜国坚,洪利兴,陈福祥,等

郑郁善,张炜银

郑郁善,邱尔发,徐道旺

郑郁善,郭海涛,徐风兰,等

郑郁善,管大耀,李仁昌

杨玉盛,俞新妥,邱仁辉

杨玉盛,俞新妥,林先富

徐凤兰,魏坦,刘爱琴

谢友森,陈子玉,周东雄

魏秀英

王勤

杉木

杉木

杉木

杉木