黄土高原环境异质性与植被的恢复与重建

王进生1,2, *

(1. 西北农林科技大学水土保持研究所, 陕西 杨凌 712100; 2. 中国科学院. 水利部水土保持研究所, 陕西 杨凌 712100)

摘要: 黄土高原是一个独特的地理区域, 由于其自然环境的特殊性, 自然区划历来富有争议。为因地制宜地进行植被建设, 在辨别植被属性有关系论点(黄土无林, 草原次生等) 的基础上, 主要用现代植被证据进一步讨论黄土高原的自然地带。分析了生物气候条件在不同地带之间的分异性, 陈述了植被地带特征。为充分说明植被地带性, 还从历史的角度探讨了植被建设的效果。表明黄土高原环境的非均匀性可表征为森林、草原等地带, 不能认为黄土高原不具有森林发育的地带性环境。相对于森林地带的非地带性, 森林草原地带北界似为树木线。植被建设不应局限于一种土地利用模式, 不能无视疏林及疏灌丛在森林草原地带的客观存在。

关键词: 生物气候条件; 自然植被; 造林实践; 区域分异; 黄土高原

文章编号: 1000-0933(2009)05-2445-11 中图分类号: Q16,Q948,X171.4 文献标识码:A

Environmental heterogeneity and revegetation on the Loess Plateau

WANG Han-Sheng1,2, *

1 Institute of Soil and Water Conservation, Northeast A&F University, Yangling, Shaanxi 712100, China
2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China

Abstract: The Loess Plateau is a distinct geographical region, where natural regionalization has always been of much controversy because of the variation in understanding its primary vegetation. In order to construct vegetation in line with local conditions, based on the discrimination on the viewpoints (no forests in the loess Plateau, secondary grasslands, etc.) relevant to the vegetation property of the Loess Plateau, the paper further dealt with the natural zonation of the Loess Plateau by adopting modern vegetation evidences. After analyzing the regional differentiation of bioclimatic conditions and the vegetation zonal characteristics in the region, the author investigated the actual effects of the vegetation construction in history so as to fully illustrate the vegetation zonality. It is shown that the Loess Plateau might be regionalized into several different vegetation zones of forest and steppe for no homogeneity of its environment. The opinion that the zonal environment for forest growth is not possessed in the Loess Plateau is accordingly inadequate. So far as the north demarcation line for the forest zone is called forest line, the north demarcation line for the forest-steppe zone should be called tree line. The vegetation construction shouldn’t be confined to such a land use pattern as “the 28-word general plan” put forward by Zhu Xianmo. The objective reality of thin woods and sparse shruberies in the forest-steppe zone should not be ignored. At last, some other issues deserving attention and research were also presented.

Key Words: bioclimatic conditions; natural vegetation; forestation practices; regional differentiation; the Loess Plateau

地处中国东部湿润区向西部干旱区过渡地段的黄土高原, 由于受长期人类活动的严重干扰, 呈现少林或无林的景观, 自然植被缺失的连片地带性分布特征, 再加之气候斑点的局限性, 对其自然环境的确切认

基金项目: 国家科技支撑计划资助项目(2006BAD09b09); 中国科学院水土保持研究所知识创新领域前沿资助项目

收稿日期: 2008-01-28; 修订日期: 2008-11-07

* 通讯作者 Corresponding author. E-mail: hswang@issw.ac.cn

http://www.ecologica.cn
识，向来就是引人注目的重大问题。究竟是森林地带？或是草原地带？自然区划对此存有争议。关于黄土高原水土流失生物治理就有两种典型的不同看法；有人认为，黄土高原历史上是一个森林广布茂密、水草丰美，牛羊蕃息的地方，人们所看到的植被稀少、黄土露面、童山秃岭以及土壤侵蚀严重，农业生态系统恶性循环的状况，是不合理的过度开垦，放牧等所造成的，而气候适宜于森林生长；另有人则认为，黄土高原历史上没有大面连续的森林，原本就是草原或半荒漠，荒漠，自然环境就不适宜森林发育，因而其大部分地区要实施造林是困难的。可见，黄土高原历史自然景观以及现代自然植被真相是植被恢复与重建的重要依据。

一个地区植被的特点和性质是该地区气候，特别是热量和水分条件以及二者的配合状况在下垫面上的反映，尤其在一定的温度条件下，水分成为植物生长和分布的限制性因子，森林就是在温度条件得到保证下湿润气候的产物。可以说，植被是自然环境分异性的主要表征[1-4]。通过孢粉分析、考古资料、历史文献记载等追溯古代植被[5-13]，对还原黄土高原自然植被的文献记载，应当说是很有意义的探索，但需要注意的是，气候的变化和植被演化的相关性、时间尺度[14-15]，也需要与现代植被研究相结合和统一。否则，在对历史时期自然植被的问题上易产生分歧。虽然残存自然植被的现状、对认识黄土高原有关的自然地理区划有一定困难，但以植物动态的观点，根据区域自然条件和植被类型，尤其能反映区域气候特征的植被类型，植被的垂直地带性差，可反映不同的自然带，陕北及甘南边缘地区处于黄土高原的核心位置[16-17]，该区域植被研究积累了丰富的资料，人们往往通过对植被特征的了解，进而掌握黄土高原的植被地理分异分布规律。笔者对黄土高原植被类型的有关研究[黄土无林，草原稀生]进行了辨析，肯定了当地植被的研究的一般结论[15-18]。本文在此基础上，主要根据该区植被的研究，尤其是长期造林的实践，采取综合方式，试图进一步深入阐述黄土高原的环境异质性，同时探讨植被的恢复与重建。

1 植被生长对地域的响应
1.1 现实植被生长

研究表明，黄土高原生物气候条件非均衡，不同地域之间存在很大差异。据调查[19]，陕北优势种群，延安以北草原成分突出，延安以南森林植被明显。油松（Pinus tabulafermis）、侧柏（Platycladus orientalis）、杜松（Juniperus rigida）、河北杨（Populus hopeiensis）、早柳（Salix matsudana）、榆树（Ulmus pumila）、大果榆（U. macrocarpa）、杜梨（Pyrus betulaefolia）、臭椿（Ailanthus altissima）等乔灌木种类，具有较强的抗旱能力，陕北分布较为广泛；然而，延安以南许多常见的乔灌木和藤本种类，如山柳（S. liouana）、野核桃（Juglans cathayensis）、胡桃（J. mandshurica）、白桦（Betula platyphylla）、金千柳（Carpinus cordata）、鹅耳枥（C. tatarinowii）、柳（Quercus dentata）、柳（Q. aliena）等，均为典型的中生植物，延安以北则没有或罕见。黄土高原南部适宜林木生长，而隐性地地貌低谷仍有利于木本向北分布，但其生长发育有所逊色；30年生侧柏林的单株材积，森林地带0.053m²，森林草原地带0.052m²，森林地带45年生的油松林，树高15m，胸径17cm，蓄积量200m³/ha，而森林草原地带43年生的油松林，树高9m，胸径11cm，蓄积量60m³/ha[20]。据据统计北旬邑（森林地带）、淳化（森林草原地带）、吴旗（灌丛草原地带）三地刺槐（Robinia pseudacacia）林的调查[21]，15岁乔木的平均高，若以吴旗为100%，则淳化为140.4%，旬邑158.3%。罗伟祥等人对刺槐、油松、侧柏、杜梨、早柳、秋槐、榆树、泡桐（Paulownia tomentosa）等多个树种（8-30a）的树高、胸径，材积指标进行了对比分析[21]，清楚地表明，陕北北部灌丛草原地带、森林草原地带，陕北南部森林地带以及关中地区之间，树木生长渐次升高。肖瑜 comparatively研究了陕西省不同气候区域人工油松林（17-25a）的生物量和生产力[22]，调查区除北亚热带宁陕县和洛南县外，其余就是黄土高原的几个县，即暖温带蓝田县、黄陵县、黄龙县和折县，以下温带神木县，其结果说明了相似的规律。油松树冠生物量比例由南向北逐渐增大，而材干（带皮）生物量比例却由南向北逐渐降低。陕北北部神木县油松生物量及生产力水平最低，但其根系生物量所占比例较大。对于落叶林（Quercus liaotungensis）林生物量的研究，充分说明了生境条件的显著影响[23]。阴坡土层厚

http://www.ecologica.cn

注
1. 高志义. 植被与黄土高原造林. 黄河中游水土保持林科学研究所成果汇编, 1986. 131-140.
(＞0.30cm)且湿润，多坡土质薄（＜0.30cm）且干燥，辽东栎的生物量和材积，前者分别为后者的3.8倍和6.8倍；干物质和材积的现实生产量，前者分别为后者的3.8倍和5.4倍；树干（树皮）生物量，前者占总生物量的52%，后者仅占28%；根系生物量，前者仅占总生物量的24.4%，而后者占到50.8%。说明为适应干旱的生境条件，林木充分拓展根系是必须的，自然选择的压力不会促使树干生物量向加大方向发展。根据“七五”期间的调查[24]，人工林在延安以南一般能够正常生长，而在延安以北却多数生长不正常。“小老树”主要发生在黄土丘陵以及沙地上，集中分布区大致相当于年降水量400～500mm的地带。可见，黄土高原愈往北及西北方向，用材林经营的局限性和困难性。

袁嘉祥依据284个县气象站的资料，选取干燥度、年降水量、年平均气温、年日照时数、日平均气温≥10℃的日数和积温、年平均气温≥5℃的日数和积温等14个指标，应用动态聚类分析方法，所作的黄土高原林业气候区划，的确也区分出与400mm等雨量线大致相齐的一条北界线[25]。但黄土高原半湿润与半干旱的界限宜在延安一线[26, 27]，而非400mm等雨量线。一般地说，森林地带标志着对农业发展有利，草原地带则相反。黄土高原农业生产特征，表现就为东南部以农为主，可种植小麦（*Triticum aestivum*）、玉米（*Zea mays*），收成较为稳定，而至西北部，以牧为主，能耕种谷类（*Setaria italica*）、糜（*Panicum miliaceum*）等耐旱作物，早作雨养农业收成很不稳定。

黄土高原天然草地类型主要有草甸草原、典型草原、荒漠草原、山地草甸、草原化荒漠、典型荒漠、低湿地草甸、裸草草丛等[28]。由于所在环境条件以及牧草组成种类的不同，垂直地带草场的产量比水平地带为高；水平地带各类型天然草场的产量由北向南呈逐渐上升的趋势，即草原化荒漠类最低，草甸草原类较高。但是，在质量上，产量高的草场往往较高，干物质、粗蛋白和粗灰分含量较多，而产量高的草场却低下，显示出低、中草原区草场质量一般优于半湿润区草场的规律。据研究[29]，草场的这种质量特点对著名的二毛裘皮绵羊的生态地理分布有着重要的影响。

1.2 植被生产力

由自然植被生产潜力（气候生产力）的计算可更清楚地看出黄土高原不同地域植被的非均质性。根据1977年H.A.叶菲莫娃关于植被年产量与辐射平衡和辐射干燥指数的关系曲线估计，黄土高原南部自然植被生产潜力为8～9t/(hm²·a)，中部4～8t/(hm²·a)，北部不足4t/(hm²·a)以下[29]。筑后（Chikugo）模型以及H. Lieth提出的Thornthwaite Memorial模型，尽管相互间计算结果有出入，但也都表明黄土高原南部至西北部气候生产力在逐渐降低[30]。

Thornthwaite Memorial模型是以受多种气象因素的影响，综合反映一个地区水热状况的实际蒸散量来计算植物气候产量，而H. Lieth提出的Miami模型是用年平均气温、年降水量二个单因素计算植物气候产量，其可靠性仅66%～75%，但它们能反映出水热条件对植物产量的影响和限制作用。由温度所确定的植物产量平均为13.6t/(hm²·a)，由降水量确定的植物产量平均为8.1t/(hm²·a)，相当于温度产量的60%。二者地理分布趋势均自东南向西北递减，而非越往西北，等值线越密集，递减速度越快。说明黄土高原气候对植物生长发育来说，热量资源比较充足，而水分是限制植物生长的主要因子。袁嘉祥将几种杨树（*Populus*）的树高、胸径和材积指标对若干气候因素所作的灰色关联度分析[30]，亦表明影响黄土高原林木生长的主要气候因素是降水。马玉蒂等对树种树龄所作的回归分析同样得出类似结论：除林木本身的因素林龄、密度外，降雨量以及与之密切相关的土壤储水量亦与林木生长相关关系显著[31]。这与前述分析相同，水分条件，特别是土壤水分是黄土高原林木生长的限制因子[18]。

在黄土高原，降水是土壤水分补给的唯一来源，土壤水分状况深受降水地理分布特点的影响，在地域上存在着明显的差异。陕北黄土高原干旱的5, 6月份土壤水分(1m土层)洛川15.16%，淳化13.55%，延长10.90%，米脂8.46%，吴堡6.34%；甘肃黄土高原4～6月份土壤含水量均值康乐12.78%，临川12.07%，定

http://www.ecologica.cn
西9.37%, 兰州6.91%, 不同区域之间的土壤含水量, 除洛川和淳化、康乐和泾川之外, 差异较大, 经 F 检验达到显著和极显著水平[21, 22, 31]。杨文治根据各地土壤水分年循环的补偿特征, 将黄土高原的土壤水分状况划分为5个区, 即土壤水分年循环均补偿区、基本补偿区、周期性补偿亏缺区、补偿亏缺区及补偿失调区[31]。通过对比, 可见黄土高原落叶阔叶林区与土壤水分年循环均补偿区或基本补偿区相当, 森林草原区或灌丛草原区与土壤水分年循环补偿亏缺区相符, 典型草原、荒漠草原区与土壤水分年循环补偿失调区对应。

由 Thornthwaite Memorial 模型所得木材气候产量, 水热条件较好的东南部为 12.0 ~ 13.4m³/(m²a), 而在年降水量不足400mm 的包头、榆林、定西、兰州一区以北地区, 木材产量不足9.5m³/(m²a)。筑就模型估计的植物气候生产力荒漠地带趋近于零。表明越往西北适宜性越差。可见, 黄土高原从东南至西北必然表现为从高大到低矮、从茂密到稀疏的植被特点。

2 植被类型及其分布

植被垂直地带性在一定程度上可以说明山体以北的水平植被特征。秦岭位于黄土高原的南端, 其北坡的植被垂直地带性表现为: 海拔2200m以下分布落叶阔叶林, 其中1600m以下分布栓皮栎 (Quercus variabilis) 和麻栎 (Q. acutissima) 林, 海拔1200 ~ 1800m分布锐齿栎 (Q. aliena var. acuteserrata) 和檞栎林, 海拔1600 ~ 2200m分布辽东栎林; 海拔2200 ~ 2600m分布针阔叶混交林; 海拔2400 ~ 3000m为常绿针叶林; 海拔2700 ~ 3400m为落叶针叶林; 海拔3300 ~ 3767m为高山灌丛草甸, 林木绝迹。但是, 受大陆性气候的影响, 秦岭以北的植被水平地带性与垂直地带性并不完全同。从南部到北部和由山下到山上逐渐分异, 差别较大。秦岭以北植被水平地带性表现为: 由秦岭北麓至延安附近略偏北为落叶阔叶林带, 延安以北至长城沿线为森林草原带, 长城沿线以北为草原带。土壤类型分布亦可佐证[18, 19], 延安以南落叶阔叶林区为灰褐土和褐土, 以灰褐土 (黑壮土) 为主, 洛川坪为棕黑土 (向森林褐土过渡的土壤); 森林草原区为典型黑土带, 灌丛草植物区为轻黑土 (灰黑土); 典型草原区为轻黑土 (向典型草原栗钙土过渡的土壤)。秦岭北坡基带并非柏林, 而是栓皮栎和麻栎林, 其中栓皮栎占主要地位[35]。这与黄土高原南部植被特征相一致。

延安以南森林地带, 目前仍存在较大面积的森林, 次生灌丛和草甸。这里地带性森林以栋 (Quercus) 林为代表, 次生林以山杨 (Populus davidiana) 林和白桦林为代表。栎林中除辽东栋和檞栎外, 麻栎、栓皮栎、板栗 (Castanea mollissima)、槲树和榛子树 (Quercus baronii), 都分布在本区南端, 北以关中北山为界。由于栓皮栎和麻栎是落叶阔叶林地带南部的代表, 所以以栓皮栎和麻栎林分布北限, 可将落叶阔叶林地带划分为南部和北部两个亚地带。栋树生态幅大较宽, 跨两个亚地带, 群落分布在崂山以南, 辽东栋既耐寒又抗旱的生态学特点, 使其不仅在秦岭落叶阔叶林的上限, 而且还在接近草原区形成森林, 构成暖温带北部的标志。

森林地带还有侧柏林侧柏和油松。侧柏林大多分布在其它林木难以定居的生境上, 如岩石裸露的部位、黄土陡壁、侵蚀沟头等。在一般情况下, 随着土壤的改善和发育, 水分条件趋于中生化, 侧柏林将被其它森林群落所替代。但在石灰性基质及陡壁地段上, 侧柏林可成为土壤性顶级群落。陕北南部, 接近关中的区域, 与秦岭相似, 油松林亦是不稳定的, 将逐渐被栋林所取代; 但在接近草原区, 油松林表现出和栋林类似的竞争力而具有一定的稳定性, 这里的顶级群落实际上是栋栎林。正如陈昌笃所述[36]: “在不太长的时间内, 在子午岭地区自然地理各种过程正常进行的条件下, 辽东栋群丛和油松群丛将成为所有阴坡和半阴坡最佳优势的群落, 并且阳坡、半阳坡也可能大部分被它们占领, 因为随着森林植被的发展所引起气候 (湿度) 的改变 (增加), 将使阳坡、半阳坡也适宜于中生阔叶树的生长, ……” 近期研究所考察的考察也证实了植被的这种动态变化[37]。

狼牙刺 (Sophora vicicifolia)、沙棘 (Hippophae rhamnoides)、黄蔷薇 (Rosa hugonis)、虎榛子 (Ostryopsis davidiana) 等灌丛是在森林恢复中起主要作用的群落[38], 它们起源于蔓荆 (Artemisia giraldii)、铁杆蒿 (A. gmelinii) 等多年生灌木群落以及黄背草 (Thesium triandra var. japonica)、大油芒 (Spodiopogon sibiricus)、野古草 (Arundinella hirta)、白羊草 (Bothriochloa ischaemum) 等多年生禾草群落 (次生草甸), 可被侧柏林、白桦林、辽东栎林、油松林所演替, 但要被山杨林所演替。黄蒿 (Artemisia scoparia) 是次生裸地上的先锋群落。正是

http://www.ecologica.cn
由于草本群落和灌丛，改变了贫瘠与干旱的土壤，才创造了乔木生长的适宜生态环境。黄土高原植被恢复策略“草灌先行”的依据就在于此[39]。一般地，在植物群落演替中，前期群落比后期群落适应性更强，而后期群落比前期群落竞争力强；土壤条件是植被演替的基本动力，而气候最终决定着植被的特点。

延安以北植被空间更替自东南向西北依次为森林、森林草原、森林木区的阴坡至沟谷，而且愈往西北，林下植被逐渐增多，呈现出灌丛草原的特征[35, 36]。组成森林草原的主要植被类型（地带性植被）是疏林草原（草本性矮生疏林）与灌木草原（草本性灌木）[41, 42]。在丘陵缓坡地形条件下，灌木草原多居上部丘顶梁脊，疏林草原分布在下部坡面上。由于森林草原地带内水热条件的差异，森林草原在其东南部占优势，疏林草原在其西北部占优势。

疏林草原类似于干热条件下的稀树草原（savanna），其特点是一些矮乔木稀疏地分布在由早生中和中早生草本植物组成的草甸草原上。乔木成分均为来自森林区的早生中等种类。疏林草原有落叶阔叶疏林草原和常绿针叶疏林草原两类，主要是落叶阔叶疏林草原，常绿针叶疏林草原仅出现在东南部。落叶阔叶疏林草原包括山桃（Prunus davidiana）、榆树、栋树、河杨杨、小叶杨（Populus simonii）以及山杏（Prunus armeniaca var. ansu）、大果榆等疏林草原，常绿针叶疏林草原包括油松、侧柏、杜松等疏林草原。灌木草原分布在丘顶梁脊、阳坡陡坡等乔木不能生长的干旱生境中，灌木常以少数个体生长于草甸草原中。它们与森林地带的草本丛不同，那里的灌木丛由灌木和中生草甸植物构成，且灌木的多度和盖度要大得多；亦与疏林草原相异，其草本优势种为长茅草（Stipa bungeana）、大针茅（S. grandis）、硬毛早熟禾（Poa sphyndyloides）、糙隐子草（Cleistogenes squarrosa）、冷蒿（Artemisia frigida）等一些多生性较强的种类，而非紫花、铁杆蒿等植物。由灌木成分的生态类型，灌木草原可包括早生灌木草原和早生灌木草原，其中早生灌木草原主要有紫丁香（Syringa oblata）、黄蔷薇、河曲苑花（Wikstroemia chamedaphne）、酸枣（Ziziphus jujuba）、沙棘、柳（Populus septum）等灌木草原。早生灌木草原主要有棘柳（Caragana pygmaea）、小叶锦鸡儿（C. microphylia）、柠条锦鸡儿（C. korshinskii）、甘蒙古锦鸡儿（C. opulens）等灌木草原。以早生灌木草原为主，或来自草甸草原或荒漠草原地带的早生灌木多分布在土壤侵蚀严重的陡坡上，其结构类型与草原区的灌丛化草原类似，多为次生，且非特定性植被，并不受优势。

由于水分因素，森林草原、灌木草原以及沟谷中的森林被破坏，形成大面积的次生草本草原和半灌木草原[43]。禾草草原如长芒草、大针茅、糙隐子草等草原，以及赖草（Aneurolepidium dasylychys）、白羊草、白茅（Pennisetum flaccidum）、香茅草（Hierochloe odorata）等草甸草原；半灌木草原如百里香（Thymus mongolicus）、冷蒿、铁杆蒿、麦蒿、苗条蒿（Artemisia capillaris）、蒙古蒿（A. mongolica）、达乌里胡枝子（Lespedeza dahurica）等。

在气候稳定、不发生较大波动的自然状态下，这些次生草本群落可能被疏林草原和灌木草原替代。动态方面，与延安以南森林地带完全相反，多年生草本群落占前，多年生草本群落占后。这样早生中和早生中早生的草本、铁杆蒿难以适应干旱贫瘠的土壤，而以长芒草为代表的早生性草本却有着较顽强的适应性而率先定居。

森林草原是森林地带与草原地带之间的复杂接触区域，既有森林地带也有草原地带的配置特点，非常反映出其过渡性，完全不同于延安以南的植被分布与组合特征。在森林地带，森林能够占据丘陵的各个地形部位。由上述可知，森林草原带南界是森林线，而北界实质上就是树木线。因为作为划分森林草原重要依据的疏林草原，其建群种是草本植物，乔木的盖度一般不超过20%，有时还低于5%，对群落环境不产生显著影响；森林草原边缘的灌丛草原区，丘陵地形的梁峁显然是生态环境。即使沟谷，也仅能生长灌丛和稀疏灌丛，森林生长受到限制。这种情况类似于树木线与森林带之间的高山或亚高山疏林草原，这里由于热量不足，树木生长稀疏、矮矮，树干弯曲，构成不成茂密的森林而成为一种独特的植被类型。当然，森林草原的形成是由于水分条件的制约。

至长治沿黄以北的草甸草原，分布着以长芒草、大针茅、百里香、冷蒿等为主的草原，森林完全绝迹，前述灌丛的分布也受到限制，仅在沟道和梁峁阴坡半阴坡草甸草原群落中生长有扁旋木（Primpina uniflora）、白发梢（Buddleja alternifolia）等，其余则为草原区的几种锦鸡儿。目前该地带植被的显著标志是沙化草原，风沙沙滩地

http://www.ecologica.cn
植物群落以沙柳（*Salix cheilophila*）、蒙古柳（*S. mongolica*）、白刺（*Larix szechuenensis*）、油莎（*Artemisia ordosica*）、南沙（*A. sphaerocarpa*）、柠条锦鸡儿、五叶松（*Cynanchum hancockianum*）、莎草（*Agrostis arenaria*）、沙米（*Psammochloa mongolica*）等为优势。历史上在这里有林木分布，但受自然和人为因素的影响，原始和次生林木都已表现为草原地带的灌丛现象。沙地有利于降雨的人渗，但对水分的蒸发、贮积以及抑制蒸发的作用，使得在局部适宜的水分条件下样草本条件下和样草本条件下，较穗出土于通常没有的乔木、灌木等早中山或再生植物的生长。

尽管自然地理环境具有相对性，但却是客观存在的。具体而言，黄土高原自东南向西北依次可区分被森林、森林草原、典型草原、荒漠草原等区域。其中，森林地带又可分为偏于北部的北亚地带和偏于南部的南亚地带。由西北黄土高原的植被特征可知，植被分区在于结合生态条件来植被的区系组成、水分生态型、生活型类型及其相互关系。荒漠草原地带也分布有较大面积的沙生植被，但它们不同于显pic性植被。掌握长芒草草原和短花针茅（*Stipa breviflora*）草原的分布规律，对于区分荒漠草原地带和典型草原地带具有重要的意义。需要指出，著名的三毛黄花多生长于宁夏及其毗邻地区，较为温燥、灰钙土与棕钙土上分布的荒漠草原是其突出的环境特征。在荒漠草原地带，三毛黄花性状良好，而至草原化荒漠或典型草原地带，品质都下降。深人草原化荒漠或典型草原地带，三毛黄花逐渐退化至零。可见，三毛黄花在草原生态适应程度较窄，对草原植被的分布具有指导意义。

3 植被恢复与重建的效果

3.1 典型实例

子午岭的原始森林于清、明两代走向破坏至以至被毁灭。明代初期，人口激增，开耕蓬勃兴起，至清代中叶，已遍及于林区。农业垦耕是林木退化的主要原因，自目前许多废弃的窑洞和田埂遗迹可说明问题。在垦耕的过程中，强烈的风化侵蚀，致使大量土物质性砂质及于地表，近沟处还形成黄土柱，黄土墙，黄土陡壁等破碎地形。由于基本物种的消亡和规模化的农业而完全消亡，它们在深陷沟谷等地段保留了下来，为后来次生林的发育提供了繁殖物种。清朝同治 5 年（1866 年），回、汉民族之间发生纠纷，这里大部分居民逃离，耕地从此开始荒芜；清朝光绪 3 年天大旱，该地居民的外迁，再次促进了弃耕的过程。在比较有利的地形和气候条件下，由于残存树木天然下种及萌生，植被得以逐渐恢复。至清代末期，子午岭次生林广泛分布，森林覆盖率高达 70% 以上。之后，又经过多次人为干扰，以至形成现在的残败林相景观。由此可见，在森林地带，即使森林破坏严重，只要树木尚存，在封禁条件下，仍然还可以恢复起来。陕北黄龙山、子午岭林区的油松林，与解放后采取封山育林的措施密不可分。这表明，局部营造人工林，利用自然力来扩展恢复森林是一条可行的途径。

有资料表明，荒山草地通过封育及播草改良（包括播草），均可促进天然森林生长，增强其繁殖更新能力，使草地植被得到良好发育。产量、质量得到较大程度提高的同时，改善草群结构，提高草质量，稷本科、豆科牧草比重增加，杂类草比重下降。近年来不少山地实行禁牧都有明显的成效。例如，延安以北分布的黄花、长芒草、白藜、白羊草、达乌里胡枝子、铁杆蒿等草地植被，盖度一般仅 35%～40%，封禁 3～4a，可提高到 70%～80%；若群落中残存灌木成分，可恢复为盖度达 80%～90% 的灌丛植被。乌审旗乌审高乡将沙地草场油蒿、杨柴（*Hedysarum mongolicum*）1 年生草种封育 8a，与退化草场相比，植物种数由 12 种提高至 15 种，盖度由 25% 提高至 60%，生物量由 20.5kg/hm² 提高至 697.5kg/hm²。封禁期间，安塞县茶坊试验区在盖度及 50% 的草原群落和先锋草本群落中补播了达乌里胡枝子、沙打旺（*Astragalus adsurgens*）、油蒿、棘、狼牙刺、柠条锦鸡儿等，可在 2～3a 内加速植被的恢复，盖度可达 50%～80%，提高幅度最低 25%，最高可达 45%。同时，同心情，固原县草场沙打旺、吴旗县飞播沙棘，均取得成功。

上述事实说明，通过封禁以封堵与植被建造相结合是重要的植被恢复途径，亦从植被实际恢复过程的

① 陈一鸣，王宏杰，滩羊分布地区草原植被的生态特征。宁夏农业现代化与建设科技文集，1983。542～562。

http://www.ecologica.cn
3.2 植被建造类型

过去普遍认为西北地区绝大部分都能造林。如1958年甘肃河西走廊，由一百万劳动力，花220多天时间，在盐沼土上造林，结果是树木成活率仅为0。1958～1961年在干旱地区又曾飞播27.3万hm²，成活状况也极差[54]。黄土高原的情况与此类似。甘肃兰州市的一个县，年降水量249.0mm，年造林数千公顷，可年年造林不见林，至今依旧荒山秃岭[55]。一般地说，降水量250～550mm为旱作农业区，乔木成林成材困难，难以形成有规模的森林。陕西榆林地区以杨树、柳树、刺槐等乔木树种大面积上山进沙造林——再告失败，曾有约80%的林业基建立投资用于乔木育苗和栽植，但灌木的保存面积却占到林地面积的72.4%，而乔木林仅占22.6%；耗费相当资金的乔木林不仅保存面积少，而且成林状况极差[56]。总结甘肃定西岷山林场对荒山绿化树种的选择，可分为3个阶段：第一阶段全部选用沙枣（Elaeagnus angustifolia）、榆树和乔木；第二阶段采用杨树的同时，加进了耐旱灌木中锦鸡儿（Caragana intermedia）；第三阶段继续使用中锦鸡儿的同时，用柏树（Juniperus chinensis）或油松代替了耐旱的杨树。三北地区固沙造林初期基本上以乔木为主，如宁夏沙坡头栽植沙枣、小叶杨、小青杨（Populus pseudo-simonii）、榆树和桑树（Morus alba）、油松等十多种乔木，但都未成功[57]。实践证明，在干旱地区除有径流汇集、灌溉或其他条件丰富的生境外，不宜大量发展乔木[18]。在半荒漠地带，由于水分赤字太大（年降水量150～250mm，年蒸发量900～1200mm），前苏联经过50多年的顽强工作，绿化沙丘就是栽植松树也告失败。可以肯定地说，沙丘营造乔木林是不可能的。半荒漠能够营造乔木林的面积最多不超过10～15%，也就是说只能在湿润的盆地里造林[58]。可见，在降水量少、自然植被生产力很小的地区造林并期望生大径材是不现实的，不顾及水量平衡，硬要普遍种树造林，其结果必然是事倍功半，得不偿失。

黄土高原造林，土层厚度除少数山地外并不认为是起主导作用的因素。要保证林木速生丰产，充分发挥速生树种的生长优势，必须要有充足的水分供应；选择适宜的生境区或有利的立地类型，不能忽视降水量的分布规律及其对造林的影响。在年降水量400mm以下的黄土高原地区，只草、灌木应以草灌为主，符合草原地带的植被特点。

关于古代植被的研究，对黄土高原植被恢复有着较大的影响。由前述可见，黄土高原无林区是不能成为的，但若不考虑历史时期的气候变迁，以黄土高原大部分地方古代都有茂密森林的论述为根据，总认为是由于人类破坏的结果而试图重建原来的景观，也是不妥当的。历史文献考证将甘肃陇中地区的马衔山、屈武山、寿鹿山、抢龙山、哈思山、官炭山等林区作为区域宜林的证据，显然是不合适的。在一个完全不宜林的地方大面积造林不能说没有盲目性，应当重视当前气候条件下地带性顶极群落的向导意义。根据植被区划所揭示的环境异质性，不同区域植被可有着不同的植被类型[18]。不同于自然植被，在劣质地上培育人工林，值得注意“草灌先行”存在的问题[59]。

年降水量400～550mm的林草草原地带是黄土高原“小老树”的主要分布区，其根源就在于对这里的植被分异性规律缺乏认识，往往以对过去森林的考证以及尚残存的树木为依据，采取以点带面、以偏概全的观点所致。典型的如过去“山顶戴绿帽”（营造乔木）的配置方案，实践证明是不可行的。所以，后来梁峁顶植被建造转变为“戴草帽”或种植灌木，符合森林草原地带草原段多属丘、脊或分水岭上，森林段分布在深谷、冲沟和其它比较湿润地方的客观自然规律。陕西绥德水土保持试验站于20世纪50年代曾在峁顶栽种了刺槐，10～15a内形成了茂密的林子，但随后又出现了枯死现象[58]。由此也可以看出，朱显谟关于黄土高原整治的“28字方略”——“全部降水就地入渗拦蓄，米粮下川上塬，林果下沟上塬，草灌土坡下塬”[59]，较为确切地描述了森林草原地带的土地利用或植被配置模式。很显然，它不能完全概括典型草原地带、荒漠草原地带或森林地带的植被建造用地依据。然而，具有典型丘陵沟壑地貌特点的森林草原地带是黄土高原水土流失最为
严重的区域，从这一点上说，“28字方略”确实具有积极的建设性意义。

4 小结

(1) 以现代植被研究为主，与古代植被探索相互结合、相互印证，可对黄土高原自然环境的属性作出准确的判断。显然，符合现今气候条件的水平地带性植被（区域植被）是重点。基于此，本文由植被生长、分布以及造林实践，着重阐述了区域分异性。表明黄土高原并不在一个自然带内，以一个自然带概括说明其整体自然环境是不确切的。与降水是人类北部北部地区趋势一致，黄土高原的植被外貌也依次呈现着密林、疏林及草原的特征。分析指出，黄土高原具有森林发育的地带性环境，相对于森林地带主要在林区（莱芜地区），进一步明确了黄土高原的造林规模。其中特别是对森林草原地带植被类型及分布特征的描述，较好地解释该地带集中出现的“小老树”现象。表明疏林及稀疏灌丛在森林草原地带是客观存在的，黄土高原植被建设不能无视这种自然规律而强求营造郁闭林。朱显谟提出的“28字方略”指导森林草原地带的植被建设更为恰当，对于其它植被地带，应该依据本地的植被特点，因地制宜地建设植被，而不应局限于一种土地利用模式。

(2) 自然环境分异性是客观存在的，各植被带的特征应当是肯定的，但由于地理界线仅具有相对的意义，有关区划仍可以讨论，本文提出的森林草原地带北界为树林线也可作为进一步探讨的依据。黄土高原植被分布主要是森林与草原的地带界限，当然也存在混合森林与荒漠草原的地带界限，此系列草场的饲用价值、生产力、载畜量等问题。最后，黄土高原草原植被占有较大的空间，区分不同性质的草原植被是不可忽视的。在全球变暖趋势明显的情况下，黄土高原植被，尤其过渡地带（森林草原、荒漠草原）的植被如何变化？不能不引起注意。古代植被研究表明，在全新世中期，由于气候暖湿，黄土高原的植被分布格局可与现在大不相同。

(3) 本文主要从大气候角度讨论了黄土高原的环境异质性，其实在一个自然带内的环境也并非是同质的，如前述森林草原地带。由于地形对大气候条件的再分配，坡向、坡度的不同，可造就相异的具有自然地理综合体含义的生态环境（生境、立地）。选择和利用小气候或小生境是植被建造的一个重要方面，过去大量的立地研究[18, 21, 32, 33]就表明了这一点。立地基本单位为立地条件类型（生境类型，森林植物条件类型），植被地带及其等级别，地类分类与植被区划相结合在实践中可较好地将区域生境与区域生态或植被地带性植被与非地带性植被兼顾。过去区划和立地（地形）分为“自下而上”地进行，现在根据景观生态学的发展，“自下而上”或者“自上而下”相结合[30, 32], 有必要重新认识区域分异规律，以使区划更加完善和符合实际。

(4) 长期造林的实践一方面表明尊重区域分异自然法则的重要性，另一方面也说明人工林生长的地理响应也可作为自然带划分的依据。进一步的研究需要明确区分区域生境与区域生态，促进自然植被发育，通过建立下种母树林，自然扩繁森林，是值得注意的植被恢复途径，需要深入研究树种选择和空间配置的问题。

(5) “28字方略”在黄土高原有着广泛的影响，并得到有关方面的积极响应，为增强植被建设的针对性，本文对此根据植被地带特征提出了不同的看法，谨供讨论。

References:

http://www.ecologica.cn

http://www.ecologica.cn
[57] ГАЕЛЬ А.Г. Discussion on forestation in sandy land and its water relationship (Translated by Zhao X L). Beijing; Science Press, 1958, 16 – 33.

参考文献:

http://www.ecologica.cn