NaCl \[\text{Populus euphratica} \] \[\text{P. popularis} \]

A summary: In salt concentration gradually increased stress conditions, the Populus euphratica, showed a significant increase in the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The production rate of \(\text{O}_2^- \) was also significantly increased. In contrast, the salt-sensitive P. popularis showed a significant decrease in the activity of these enzymes.

Key words: Populus euphratica; P. popularis; salt stress; antioxidant enzymes.

Abstract: In the present study, we investigated the effects of increasing soil NaCl on leaf Na\(^+\) and Cl\(^-\) concentrations, \(\text{O}_2^- \) production rate, and the activity of antioxidant enzymes. The results showed that the antioxidant enzyme activities, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR), were significantly increased in Populus euphratica under NaCl stress. However, in P. popularis, the antioxidant enzyme activities were significantly decreased.

Article number: 342

Received date: 2006-08-25

Accepted date: 2007-03-28

Foundation item: This work was financially supported by the National Natural Science Foundation of China [No. 30430430], the HI-TECH Research and Development Program of China [863 Program], the Foundation for the Author of National Excellent Doctoral Dissertation of PR China [No. 200152], and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of MOE [PRC] [No. 2002-323].

Biography: ZHU Hui-Juan, Master candidate, mainly engaged in tree stress physiology. E-mail: zhuhuijuan@1213@.com

http://www.ecologica.cn
significant increase of SOD activity in stressed P. popularis plants and CAT activity remained lower than control levels during the period of salt stress. APX and GR activity began to increase after 13 – 18 days of salt treatment when stressed P. popularis plants exhibited leaf injury symptoms. This was the typical response of salt-induced oxidative stress in P. popularis. In contrast to P. popularis Na+ and Cl− concentration in P. euphratica leaves did not increase after salt stress was initiated but O\textsubscript{2}− production rate began to increase after 7 days of salinity. Activity of SOD+ APX and CAT was elevated corresponding to the increased O\textsubscript{2}− production suggesting that P. euphratica plants were able to sense salt stress and up-regulated the antioxidant enzymes to reduce salt-induced lipid peroxidation and membrane permeability+ which contributing to membrane integrity maintenance and salt tolerance in P. euphratica.

Key Words Populus euphratica, P. popularis 35 – 44, salt stress, reactive oxygen species, ROS, antioxidant enzymes

1. **Materials and Methods**

1.1 Plant Materials

Populus euphratica and P. popularis 35 – 44

1.2 Plant Culture Conditions

Hoagland

1.3 Salt Treatment

Na+ Cl− O\textsubscript{2}− 0.2 ~ 0.3 g 50 ml 25 ml 1 mol/L HNO\textsubscript{3} 12 h 100°C

http://www.ecologica.cn

取

于预冷的研钵中, 加入

预冷的溶酶蛋白提取液, 并在冰浴上研磨成浆。在冰浴中离心后分取上清液, 保存备用, 该上清液即为溶酶提取液。

活性测定

活性测定采用氮蓝四唑 (NBT) 比色法。反应体系:

磷酸缓冲液, 甲硫氨酸, 氮蓝四唑,

的核黄素, 测定管加

中酶提取液, 对照管加

的磷酸缓冲液。对照管和测定管各取两只 (各管的透光尽量一致), 混合均匀后, 把一支对照管放在暗处, 其它

日光灯下反应 (此时为对照照光管的吸光度达到最大值), 然后在

处测定其活性。以每分钟氧化

的酶量为一个酶活单位。

活性测定

活性测定参照蒋明义

的方法, 反应液中含双蒸水, 抗坏血酸 (Asc),

中酶提取液, 最后加入

启动反应, 以不加酶提取液为对照, 然后在

处测定其活性。

活性测定

活性测定参照蒋明义

的方法, 反应液中含

双蒸水,

,

中酶提取液, 加入

为对照, 在

处测定其活性。

活性测定

活性测定采用蒋明义

的方法, 反应液中含

双蒸水,

中酶提取液, 以不加

为对照, 在

处测定其活性。

产生速率测定

产生速率测定采用王爱国, 罗广华

的方法, 取

中获取的酶提取液加入

羟氨氯化物混匀后, 水浴, 取

混合液加入

的对氨基苯磺酸,

的 "F 萘胺

, 加入和

乙醚, 混匀离心 (

), 取下层液相在

比色测吸光值。

蛋白质含量测定

蛋白质含量测定采用李合生

考马斯亮蓝染色法。取

中酶提取液加入到

双蒸水中, 再加入

考马斯亮蓝混匀后在

比色测吸光值。

结果与分析

如图

所示, 随着盐胁迫时间的延长, 两种杨树叶中

、

含量也随着升高, 其中胡杨叶中

、

含量变化不如群众杨明显, 只在盐胁迫第

天时显著上升, 其含量分别是对照的

、

倍, 而群众杨则不

同, 盐胁迫第

天时叶中

、

含量就显著上升, 此时其叶中

、

含量就已经是对照的

、

倍。因此, 胡杨的拒盐

期
Fig. 1 Changes of Na⁺ and Cl⁻ concentrations in leaves of *P. euphratica* and *P. popularis* during the period of salt stress

*P < 0.05 Asterisk represents significant difference at P < 0.05 between control and NaCl treatment

Fig. 2 Changes of O²⁻ production rate in leaves of *P. euphratica* and *P. popularis* during the period of salt stress

*P < 0.05 Asterisk represents significant difference at P < 0.05 between control and NaCl treatment

2.2 O²⁻

2.6 O²⁻ 18d O²⁻ 2.6 O²⁻ 18 O²⁻ 1.6 O²⁻ 18d O²⁻ 1.8 O²⁻

2.3 SOD

http://www.ecologica.cn
随着盐胁迫时间的延长,两种杨树体内SOD活性呈下降趋势,除胡杨外,对照和盐处理苗木叶片SOD活性差别不大(图3)。

图3 盐胁迫过程中胡杨和群众杨叶片SOD活性的变化

2.4 APX

H_{2}O_{2} 被APX和SOD结合起来可以把有害的O·和O_{2}^{.}转化成O_{2}和H_{2}O_{2},由此防御对细胞的伤害,保护膜的结构和防止氧化胁迫对植物的损伤。图F所示,胡杨体内APX活性在整个盐胁迫过程中与对照相近,而群众杨活性2GGE4 GII期朱会娟等:L-6*胁迫下胡杨(P. euphratica)和群众杨(P. poplaris)抗氧化能力及耐盐性

http://www.ecologica.cn
图5 盐胁迫过程中胡杨和杨树叶片过氧化氢酶活性的变化

图6 盐胁迫过程中胡杨和杨树叶片谷胱甘肽氧化还原酶活性的变化

* P < 0.05 双标志代表在对照和NaCl处理之间具有显著性

讨论

在盐胁迫条件下，胡杨叶中Na+、K+、Ca2+含量几乎与对照相同，直到盐胁迫浓度增加到250mmol/L时，叶中盐分含量才开始缓慢增长，而群众杨叶中Na+、K+、Ca2+含量则在盐浓度增加到150mmol/L后显著增高（图5）。表明在盐胁迫下胡杨能够运用自身的拒盐性适应盐胁迫环境，这与我们前面的研究结果一致。

胡杨的拒盐性是来自于根细胞的离子区隔化作用。盐胁迫条件下，胡杨将有害盐分积累在根系皮层细胞的液泡中，因而限制了盐离子的根冠运输。而群众杨根细胞的离子区隔化能力弱，致使盐离子在叶片细胞中积累，有害盐分在细胞中大量积累，导致渗透胁迫、离子毒害以及氧化胁迫。特别是活性氧浓度过高，膜脂过氧化作用增强，破坏膜系统的完整性，进而引起电解质外渗，严重时导致苗木死亡。

在正常情况下，植物细胞内自由基的产生与清除处于动态平衡，而当植物一旦处于盐胁迫下，ROS含量增加，当ROS积累超过抗氧化系统的清除能力时，ROS就会大量积累，造成了抗氧化酶活性的降低和膜透性的增加。NMP、APX、GR等保护酶类在植物体内协同作用清除过量的活性氧，维持活性氧的代谢平衡、保护膜结构，从而使植物在一定程度上忍耐、减缓或抵御逆境胁迫伤害。

NMP通过歧化反应使$\cdot OH$转变为H_2O，在清除ROS的酶中起着很重要的作用。在盐胁迫下，胡杨在盐处理第7天时其叶中$\cdot OH$产生速率是对照的2倍（图5），较多的$\cdot OH$同时诱导了NMP酶活性的增加（图5），高活性的NMP酶清除了胡杨体内的过量的$\cdot OH$，减轻了NaCl胁迫对胡杨细胞的伤害。在NMP活性增加的同时，胡杨叶中APX、GR这两种主要清除$\cdot OH$的酶活性明显提高（图5），这主要是因为NMP歧化$\cdot OH$的产物H_2O，H_2O也是抗氧
统造成更大的伤害。而群众杨在叶片即将出现盐伤害症状时,叶中化系统中的信号物质,诱导了。盐处理期间一直低于对照,可见,胡杨在期的盐胁迫条件下,由于胡杨具有较高的排盐性,控制了盐离子的上运,也就有效降低了盐诱导的膜脂的过氧化。谷胱甘肽是有效的过氧化物清除剂之一,可以及时清除。抗氧化酶活性迅速上升,阻止叶片中活性氧的积累,避免其对膜的伤害。这是典型的植物抗逆的预警机制。在长期不断提高的盐胁迫条件下,群众杨叶片中抗氧化能力及耐盐性。抗坏血酸能与活性氧反应,减少活性氧伤害。而胡杨抵御盐胁迫引起的氧化胁迫主要依靠抗氧化酶系统起作用,但具体的机理还有待于进一步研究进行澄清。谷胱甘肽循环使植物细胞。另外,胡杨维持盐胁迫下较高的酶起主要作用。这与多方面起主要作用,而在高盐浓度下,协同作用下,共同清除盐诱导的过氧化损伤,对其对质膜的过氧化损伤。总的来说,在长期不断提高的盐胁迫条件下,群众杨叶片中抗氧化剂,如抗坏血酸、谷胱甘肽得以再生,在盐胁迫初期,胡杨在盐胁迫初期大量积累引起氧胁迫,伤害植物细胞。而胡杨则在盐胁迫初期的盐胁迫条件下,由于胡杨具有较高的排盐性,控制了盐离子的上运,也就有效降低了盐诱导的膜脂的过氧

References

http://www.ecologica.cn

参考文献:

http://www. ecologica. cn