生态学报  2017, Vol. 37 Issue (23): 7791-7798

文章信息

孙娟娟, 张英俊.
SUN Juanjuan, ZHANG Yingjun.
植物对盐分空间不均匀分布的形态和生理响应研究进展
A review of plant morphology and physiological response to spatially heterogeneous salinity
生态学报. 2017, 37(23): 7791-7798
Acta Ecologica Sinica. 2017, 37(23): 7791-7798
http://dx.doi.org/10.5846/stxb201703200472

文章历史

收稿日期: 2017-03-20
修订日期: 2017-08-30
植物对盐分空间不均匀分布的形态和生理响应研究进展
孙娟娟1 , 张英俊2     
1. 中国农业科学院草原研究所, 呼和浩特 010010;
2. 中国农业大学动物科学技术学院草业科学系, 北京 100193
摘要: 盐胁迫是干旱、半干旱地区以及灌溉土地主要的非生物胁迫,是影响农业生产的主要不利环境因子之一。随集约化灌溉农业的发展、水资源的缺乏、气候干旱带来的蒸发量的增加,土壤及地下水盐渍化程度不断增加。自然界中,土壤盐分在时空上呈不均匀分布。关于植物对均匀盐胁迫的响应研究报到较多,然而植物对不均匀盐胁迫的响应研究报道较少。分析了国内外植物适应不均匀盐胁迫的研究案例,从植物地上部分生长、地下部分生长、水分调节、光合作用以及离子调控等方面阐述植物适应盐分不均匀分布的生理机制,并提出展望。
关键词: 不均匀盐胁迫     水分吸收     离子调控    
A review of plant morphology and physiological response to spatially heterogeneous salinity
SUN Juanjuan 1, ZHANG Yingjun 2     
1. Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China;
2. Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: Salt is a major abiotic stressor in arid, semi-arid, and irrigated areas. The expansion of irrigated agriculture and the intensive use of water resources combined with high evaporation rates, leads to increasing salinity in soil and ground water. Soil salinity is rarely spatially uniform in field conditions. Numerous studies on plant physiological responses to salinity have been conducted using uniform conditions; however, only a few studies have investigated the physiology of plants grown in nonuniform root-zone salinity conditions. This paper summarizes domestic and international case studies of plant response to heterogeneous salinity. Mechanisms of plant growth under heterogeneous salinity were illustrated by plant shoot growth, root growth, water relations, photosynthesis, and ion regulation. Finally, research prospects for this domain are presented.
Key words: heterogeneous salinity     water uptake     ion regulation    

盐胁迫是干旱、半干旱地区以及灌溉土地主要的非生物胁迫, 是影响农业生产的不利环境因素之一。世界约有7%的陆地面积, 20%的栽培土地, 几乎一半的灌溉土地受到盐胁迫影响[1]。我国盐碱地面积约有3400多万公顷[2]。随集约化灌溉农业的发展, 水资源的缺乏, 气候干旱带来的蒸发量的增加, 土壤及地下水盐渍化程度不断增加[3]

自然界中土壤盐分在时间与空间上呈不均匀状态存在[4-7], 并且植物根区的土壤盐分也呈不均匀分布[8-13]。土壤盐分含量随地下水位的波动[14]、土层深度的增加、水平范围距离的不同、季节的变化[15-16]、灌溉方式的不同[17-18]而变化, 降雨对盐分的淋溶作用也会导致土壤盐分的不均匀分布[19]。植物吸收水分时能将90%以上的Na+滤在根外, 因此植物本身也会导致土壤盐分的不均匀分布[20]。盐土的土壤含盐量从接近于0到高出海水盐分浓度几倍的范围变化[8, 13-14, 21-22]。研究表明, 植物在盐土中能够维持生长, 土壤盐分浓度的不均匀分布起着极为重要的作用, 当植物生长在均匀的高盐含量的盐土中将面临死亡[23-24]。然而土壤盐分的不均匀分布与变化, 却给植物耐盐品种的选育带来极大的困难。研究植物对盐分空间不均匀分布的响应机制, 对于筛选和培育耐盐植物、优化盐碱地植物种植模式、提高盐碱地植物生产力具有非常重要的理论指导意义。

本文着眼于植物对不均匀盐胁迫的响应机制, 对国内外的研究案例进行总结和分析, 以明晰该研究领域的发展趋势。

1 盐土对植物的危害

盐土是土壤可溶性盐含量高, 土壤电导率大于等于4dS/m(相当于NaCl浓度为40mmol/L, 渗透压为0.2Mpa)[25]或土壤含盐量大于0.1%[26]的土壤。盐土导致大多数农作物的产量下降。盐土中的阳离子主要包括Na+、Ca2+和Mg2+, 阴离子主要有Cl-、SO42-、CO32-和HCO3-, 在盐土中Na+的含量最多、可溶性最大、移动性最强、对植物危害最大[27]。盐对植物造成的危害主要有3个方面:第一, 降低土壤的渗透势增加植物吸收水分的阻力, 造成植物生理干旱[28];第二, 导致植物营养失衡, 高浓度的Na+抑制了植物对K+的吸收[29];第三, 造成植物离子毒害, 高浓度的Na+和Cl-均能影响植物的生理代谢过程, 影响植物的光合效率[30]。大部分的植物耐盐性研究都是在均匀盐胁迫条件下进行的, 关于不均匀盐胁迫对植物的影响研究较少。不均匀盐胁迫包括水平方向的不均匀盐胁迫和垂直方向的不均匀盐胁迫。植物在水平方向的不均匀盐胁迫是通过分根培养系统实现的[31], 而垂直方向的盐胁迫是通过蜡纸将植物上部根系和下部根系周围的土壤分隔进行的[32]。由于植物垂直方向不均匀盐胁迫实验操作难度较大, 大部分关于不均匀盐胁迫对植物的影响研究都是在水平方向进行的。

2 土壤盐分空间不均匀分布及原因

田间土壤含盐量从0到高出海水盐分浓度几倍的范围变化[13]。研究认为甜土植物能够在表层盐分含量高的土壤中生存, 主要是由于植物能够从下层土壤吸取淡水[33]。土壤中盐分的水平变化及垂直变化同时存在, 表 1中是不同生境条件下土壤盐分的变化情况。

表 1 不同环境土壤含盐量在水平方向及垂直方向的分布 Table1 Horizontal and vertical variation in soil solution salinity in different environments
环境
Environment
土壤溶液盐分含量变化Salinity variations in the soil solution 参考文献
References
电导率值/(dS/m)
Electric conductivity
方向
Direction
距离/m
Distance
沙漠Sandy desert 23—86 水平 < 1 [8]
旱地灌木地Dryland shrubland 6—130 水平 < 10 [34]
灌溉农田Irrigated field 0—24 水平 < 10 [21]
盐碱滩Salt marsh 51—117 水平 2 [35]
干旱草原Dryland grassland 21—118 垂直 < 1 [14]
旱地农田Dryland farming 18—42 垂直 < 1 [14]
河漫滩Floodplain 18—64 垂直 < 1 [36]
红树林Mangrove forest 9—64 垂直 ~1 [37]
半干旱地区河漫滩Semi-arid floodplain 28—95 垂直 < 4 [38]
盐碱滩Salt marsh 70—214 垂直 1 [39]
湿地Wetland 7—37或68—250 垂直 < 1 [40]
绿洲荒漠过渡带Oasis-desert transition belt 0.39—19.88 水平及垂直 < 2000 [41]
滩涂农田Mudflat farmland 0.23—1.13 垂直 < 0.2 [42]
海涂围垦区Coastal reclamation area 0.42—7.08 水平 < 300 [43]

土壤中盐分的变化同时受到降雨、灌溉及植物的影响[44-45]。滴灌导致土壤盐分在土壤表层与滴管带之间的积累[46]。对于沟灌系统, 水分和盐分在土壤毛细管的作用下缓慢上升导致盐分在苗床中部的积累[22]。过量灌溉或多年生植被的减少往往会导致地下水位上升, 从而导致表层土壤含盐量的增加, 特别是在蒸发量较大的时期[47-48]。植物本身会导致土壤盐分不均匀分布。植物的根在吸收水分时能够将90%以上的Na+滤在根外, 导致植物根际周围盐分的不均匀分布[20, 49]。盆栽实验表明, 小麦(Triticum aestivum)根际土壤的含盐量是根外围土壤含盐量的2倍[50]

3 盐分空间不均匀分布对植物生长的影响 3.1 盐分空间不均匀分布对植物地上部分生长的影响

不同植物茎生长对不均匀盐胁迫的反应不同, 已开展的研究中除了辣椒[51](Capsicum annuum)在不均匀盐胁迫下其生物量与均匀盐胁迫无显著差异外, 多数植物不均匀盐胁迫下的地上生物量大于均匀盐胁迫下的地上生物量, 见表 2。充分说明不均匀盐胁迫能够缓解均匀高盐胁迫对植物造成的危害。

表 2 不均匀和均匀盐胁迫下不同植物地上生物量的比较 Table2 Aboveground mass under heterogeneous and uniform salinity among different species
植物种类
Species
盐胁迫处理浓度
Salinity/ (mmol/L NaCl)
盐胁迫处
理时间/d
Treatment period
地上生物量(占对照的百分比)
Aboveground mass (% control)
不均匀盐胁迫下植物地上生物量(占均匀盐胁下植物地上生物量的百分比)
Aboveground mass of heterogeneous salinity (% uniform salinity)
参考文献
References
不均匀盐胁
Heterogeneous salinity
均匀盐胁迫
Uniform salinity
拟南芥Arabidopsis thaliana 50 5 87 62 28 [52]
番茄Lycopersicon esculentum 75 8 120 87 38 [9]
紫花苜蓿Medicago sativa 75 9 94 82 15 [31]
紫花苜蓿Medicago sativa 150 9 88 71 24 [31]
紫花苜蓿Medicago sativa 225 9 81 68 19 [31]
大麦Hordeum vulgare 200 10 108 75 44 [53]
夹竹桃Nerium oleander 200 10 100 58 73 [53]
葡萄Vitisvinifera 80 120 55 5 1000 [10]
酸橙Citrus aurantium 80 120 79 19 316 [54]
大洋洲滨藜Atriplex nummularia 670 21 89 39 128 [55]
白楔Batis maritima 800 50 200 63 217 [56]
海茴香Crithmum maritimum 300 50 98 48 104 [56]
海马齿Sesuvium portulacastrum 800 45 120 31 287 [57]
大洋洲滨藜所受不均匀盐胁迫处理中低盐胁迫根部盐分浓度为10mmol/L NaCl, 其他植物的不均匀盐胁迫处理中低盐胁迫根部盐分浓度均为0mmol/L NaCl

关于不均匀盐胁迫下植物生长取决于什么存在4个假设:(1)不均匀盐胁迫下植物生长与低盐胁迫根部的盐分浓度有关;(2)不均匀盐胁迫下植物的生长与根部盐分浓度平均值有关;(3)不均匀盐胁迫下植物生长与整个根部所受盐胁迫平均浓度有关;(4)不均匀盐胁迫下植物的生长取决于根重加权盐分浓度平均值。这些假设分别在不同的植物中得到验证, 也说明了不同植物间对不均匀盐胁迫表现的差异。早期田间试验研究认为植物的产量与土壤平均盐分浓度有关[7, 58-59];也有一部分研究认为植物的产量与根重加权盐分浓度平均值有关[60];还有研究认为不均匀盐胁迫下植物地上生物量与水分吸收加权盐分浓度平均值有关[54, 61];对辣椒的研究认为不均匀盐胁迫下, 最高盐胁迫根部的盐胁迫浓度决定了植物的生长[51]。孙娟娟对紫花苜蓿的研究认为, 不均匀盐胁迫下紫花苜蓿的生长与根部盐分浓度平均值、根重加权盐分浓度平均值和根部水分吸收加权盐分浓度平均值都有一定的相关性, 但与根部水分吸收加权盐分浓度平均值的相关性最大[62]

3.2 盐分空间不均匀分布对植物根生长的影响

关于不均匀盐胁迫对植物根生长的影响研究较少。多数研究认为在不均匀盐胁迫下, 植物大部分新生根都会出现在不受盐胁迫或者盐胁迫程度较低的根部。通过分根实验, 给番茄进行不均匀盐胁迫发现, 在非盐胁迫的根部出现了根的补偿生长, 不均匀盐胁迫下非盐胁迫一侧根的生物量比对照组提高了60%, 这部分根生物量占根总生物量的72%[9]。0/150mmol/L NaCl处理冬小麦, 其非盐胁迫一侧根系干重、根长和侧根数分别比非盐胁迫对照增加了42.1%、21.3%和60.9%[63]。而不均匀盐胁迫下在非盐胁迫根部或者低盐胁迫根部是否发生根的补偿生长取决于高盐胁迫根部盐分浓度的大小。盐生植物大洋洲滨藜在10/670mmol/L NaCl的胁迫下其两侧根部生物量没有显著不同, 因此也没有出现低盐胁迫根部的补偿生长[55], 而当高盐胁迫根部盐分浓度增加到1500mmol/L NaCl时, 大洋洲滨藜低盐胁迫根部干重显著高于高盐胁迫根部根干重[60]。0/75mmol/L NaCl处理紫花苜蓿两侧根的生物量与0/0mmol/L NaCl处理两侧根的生物量无显著差异, 随高盐胁迫根部盐分浓度的增加, 当给紫花苜蓿0/150和0/225mmol/L NaCl处理时紫花苜蓿非盐胁迫一侧根部的根生物量分别比0/0mmol/L NaCl处理一侧根的根生物量提高了15%和20%[31], 低盐胁迫根部根的生长会受到高盐胁迫根部盐分浓度的影响的原因, 还有待于进一步研究。对不均匀盐胁迫下紫花苜蓿根系构型研究, 发现当高盐胁迫根部NaCl浓度在75mmol/L和150mmol/L时, 非盐胁迫一侧根部的总根长和总根表面积与对照无显著差异, 然而0—0.3mm直径的根长比例却显著高于对照组;当高盐胁迫根部NaCl浓度为255mmol/L时, 发现非盐胁迫一侧根部根长及根表面积的增加[62]

4 植物对盐分空间不均匀分布的生理响应 4.1 植物对水分吸收的调节

关于不均匀盐胁迫下植物对水分吸收及水势的研究非常有限。研究认为均匀盐胁迫导致植物对水分吸收的下降[10, 60, 64-66], 然而, 不均匀盐胁迫下植物对水分的吸收量高于均匀盐胁迫下植物对水分的吸收量。主要是由于低盐胁迫根部能够部分地[31, 55, 60, 65, 67]或全部地[9-10, 54]补偿高盐胁迫根部对水分吸收的减少。0/75、0/150、0/225mmol/L NaCl处理紫花苜蓿,发现非盐胁迫一侧根部水分吸收分别比0/0mmol/L NaCl处理一侧根部提高了18%、20%、27%;75/150、75/225mmol/L NaCl处理紫花苜蓿75mmol/L NaCl一侧根部的水分吸收分别比75/75mmol/L NaCl一侧根部水分吸收提高了36%和16%[31]

不均匀盐胁迫下, 茎水势与受盐胁迫最低的根部水势有关。对盐生植物大洋洲滨藜进行10/230-670mmol/L NaCl不均匀盐胁迫处理, 发现其黎明前茎水势与对照(均匀的10mmol/L NaCl处理)无显著差异, 表明了茎水势受低盐胁迫根部盐分浓度影响较大, 而不受高盐胁迫根部盐分浓度影响[55]。对甜土植物的相关研究也发现了类似的结果, 0/80mmol/L NaCl处理酸橙的茎水势为0.2MPa与非盐胁迫对照的茎水势相同, 而均匀80mmol/L NaCl处理其茎水势则降到-2.7Mpa[54];在紫花苜蓿的研究中发现, 0/75、0/150、0/225mmol/L NaCl处理黎明前叶片水势与非盐胁迫对照均无显著差异, 且分别比均匀的75、150、225mmol/L NaCl处理提高了15%、31%、50%。不均匀盐胁迫75/150和75/225mmol/L NaCl处理紫花苜蓿叶片水势与均匀75mmol/L NaCl处理无显著差异, 分别比均匀150和225mmol/L NaCl处理提高了28%和37%[31]。可能与植物能够从低盐胁迫根部吸收较多的水分有关, 在这些研究中, 不均匀盐胁迫下植物吸收的水分71—91%来自于低盐胁迫根部[31, 54-55]

4.2 不均匀盐胁迫对植物光合特征的影响

不均匀盐胁迫能够缓解均匀盐胁迫引起的植物气孔导度、胞间二氧化碳浓度和蒸腾速率的下降。对冬小麦的研究发现, 0/150mmol/L NaCl处理冬小麦14天其光合速率分别比均匀75和150mmol/L NaCl处理提高了8.5%和43.8%、该处理冬小麦的气孔导度分别比均匀75和150mmol/L NaCl处理提高了8.0%和119.8%、胞间二氧化碳浓度分别提高了52.1%和30.1%、蒸腾速率分别提高了22.1%和121.5%[63]。在紫花苜蓿的研究中发现, 0/225mmol/L NaCl处理紫花苜蓿的净光合速率、气孔导度和蒸腾速率分别是均匀225mmol/L NaCl处理的1.4倍、1.7倍和1.7倍[62]。不均匀盐胁迫下盐生植物气孔导度与非盐胁迫时的气孔导度无显著差异[55]。对大麦的研究发现, 均匀盐胁迫18d其气孔导度急剧下降, 而不均匀盐胁迫27d时, 大麦的气孔导度才发生急剧下降, 说明了不均匀盐胁迫缓解了大麦叶片的衰老[68]。0/200、50/150mmol/L NaCl不均匀盐胁迫7d, 棉花的净光合速率分别比均匀100mmol/L NaCl处理提高了41.1%和18.4%、蒸腾速率分别提高了49.1%和33.5%、叶绿素含量分别提高了21.2%和10.9%、气孔导度分别提高了97.7%和60.2%[65]

4.3 不均匀盐胁迫下植物对Na+和K+的调控

植物维持高耐盐性的机制之一就是在高盐胁迫下能够使茎中Na+浓度维持在较低水平。研究认为盐胁迫下植物茎生长与茎中Na+浓度呈显著负相关。盐胁迫下植物茎部低浓度的Na+含量往往与高浓度的K+含量相伴, 研究认为对于很多植物细胞能够维持较高的K+/Na+要比单一的维持低浓度的Na+更重要[69]。Na+是通过根皮层细胞的被动吸收从土壤进入根部的[740]。Na+在植物中的净积累是Na+被动流入与主动流出的平衡。Na+由根部排出是很多植物的重要耐盐机制之一[71]

不均匀盐胁迫下植物茎或叶片Na+含量通常高于非盐胁迫对照组[53, 55, 60]。大麦、菜豆(Phaseolus vulgaris)和夹竹桃在不均匀的0/100mmol/L NaCl胁迫下, 叶片Na+含量分别是对照组的58倍、34倍和57倍[53]。0/200、50/150、100/100mmol/L NaCl处理棉花7d, 其叶片Na+含量分别为对照组的4倍、5倍、6倍[65]。10/670、230/670、450/670mmol/L NaCl处理21d大洋洲滨藜叶片Na+含量分别为对照组的1.5倍、1.8倍、1.7倍[55]。海马齿苋在0/800mmol/L NaCl下, 其叶片Na+含量是对照组的20倍[57]。然而, 不均匀盐胁迫下植物茎叶的Na+含量显著低于均匀盐胁迫处理组。10/670mmol/L NaCl不均匀盐胁迫21d, 大洋洲滨藜叶片Na+含量为280mmol/L, 而均匀的670mmol/L NaCl盐胁迫其叶片Na+含量为830mmol/L[55]。0/75、0/150和0/225mmol/L NaCl处理紫花苜蓿其叶片Na+浓度分别比均匀的75、150mmol/L和225mmol/L NaCl处理降低了42%、43%和43%[31]。说明不均匀盐胁迫能够缓解均匀盐胁迫对植物造成的Na+的毒害。对棉花[65]和紫花苜蓿[31]进行不均匀盐胁迫处理, 发现非盐胁迫一侧的根部Na+的含量, 显著高于非盐胁迫对照组[65], 当去掉非盐胁迫一侧根部的韧皮部时, 棉花非盐胁迫一侧根部Na+含量显著降低, 说明了叶片Na+通过韧皮部转移到低盐胁迫根部。采用非损伤微测技术对棉花根部进行检测, 发现不均匀盐胁迫下棉花非盐胁迫一侧根部Na+外流增加[65], 说明来源于高盐胁迫根部的Na+向非盐胁迫根部外排。通过添加Na+外排抑制剂阿米洛利和矾酸钠后, 发现Na+外排速度降低, 说明不均匀盐胁迫下Na+的外排可能是通过激活质膜Na+/H+逆向转运蛋白实现的。

伴随着叶片Na+含量的减少, 不均匀盐胁迫导致海马齿、大洋洲滨藜、棉花等植物叶片K+含量增加[55-57, 65]。0/800mmol/L NaCl处理45d, 海马齿叶片K+含量为均匀盐胁迫处理的7倍[57];50/150mmol/L NaCl处理棉花7d, 其叶片的K+含量比均匀的100mmol/L NaCl增加了12%[65]。然而不均匀盐胁迫并没有导致紫花苜蓿叶片K+含量的增加[31]。不均匀盐胁迫下棉花两侧根部K+含量不同[65], 而不均匀盐胁迫下大洋洲滨藜两侧根部的K+含量并没有受到两侧不同的盐分浓度的影响, 表现为两侧根部K+浓度无显著差异[55]。研究发现不均匀盐胁迫下紫花苜蓿的茎生长速率与叶片K+浓度无显著相关性, 然而与两侧根部K+浓度均有显著正相关关系, 而且与高盐胁迫根部K+浓度的相关性要高于与低盐胁迫根系K+浓度的相关性, 表明增加非盐胁迫根部对K+吸收以及减少盐胁迫根部K+的外流, 特别是提高高盐胁迫根部对K+的持留能力, 对于不均匀盐胁迫缓解高盐胁迫对紫花苜蓿生长的抑制起非常重要的作用[31]

5 展望

不均匀盐胁迫下植物的生理机制研究取得了一定的进展, 但与均匀盐胁迫下植物的生理机制研究相距甚远。目前对很多植物适应不均匀盐胁迫的机制还不清楚。开展植物对不均匀盐胁迫的适应机制研究是对植物耐盐理论的重要补充, 也是推动和加速耐盐植物育种进程的重要理论基础。不均匀盐胁迫处理更符合植物在盐土中的实际生长状况, 在今后的研究中应该得到重视。以下问题的解决希望能够推动植物对不均匀盐胁迫响应机制的了解:

(1) 比较不同物种或者同一物种耐盐性差异大的不同品种对不均匀盐胁迫的响应机制。对耐盐植物或耐盐品种的筛选具有重要的理论意义;(2)目前关于植物对垂直方向不均匀盐胁迫的响应机制研究较少;(3)低盐胁迫根部对水分的补偿性吸收以及根的补偿性生长会受高盐胁迫根部盐分浓度的影响, 低盐胁迫根部感知高盐胁迫根部盐胁迫程度大小的信号传导机制也有待于深入研究;(4)不均匀盐胁迫下植物根系形态及生理的可塑性研究;(5)植物适应不均匀盐胁迫的分子机制研究。

参考文献
[1] Sudhir P, Murthy S D S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 2004, 42(2): 481–486.
[2] 张建锋. 盐碱地生态修复原理与技术. 北京: 中国林业出版社, 2008.
[3] Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 2006, 56(2): 136–146. DOI:10.1016/j.envexpbot.2005.02.001
[4] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants:where next?. Australian Journal of Plant Physiology, 1995, 22(6): 875–884. DOI:10.1071/PP9950875
[5] Maas E V. Plant growth response to salt stress//Lieth H, Al Masoom A A, eds.Towards the Rational Use of High Salinity Tolerant Plants. Tasks for Vegetation Science. Dordrecht:Springer, 1993:279-291.
[6] Richards R A. Should selection for yield in saline regions be made on saline or non-saline soils?. Euphytica, 1982, 32(2): 431–438.
[7] Shalhevet J, Bernstein L. Effects of vertically heterogeneous soil salinity on plant growth and water uptake. Soil Science, 1968, 106(2): 85–93. DOI:10.1097/00010694-196808000-00003
[8] Li C J, Li Y, Ma J. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecological Research, 2011, 26(2): 385–394. DOI:10.1007/s11284-010-0793-0
[9] Flores P, Botella M A, Martínez V, Cerdá A. Response to salinity of tomato seedlings with a split-root system:nitrate uptake and reduction. Journal of Plant Nutrition, 2002, 25(1): 177–187. DOI:10.1081/PLN-100108789
[10] Shani U, Waisel Y, Eshel A, Xue S, Ziv G. Responses to salinity of grapevine plants with split root systems. New Phytologist, 1993, 124(4): 695–701. DOI:10.1111/nph.1993.124.issue-4
[11] Dong X W, Zhang X K, Bao X L, Wang J K. Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune. Plant, Soil and Environment, 2009, 55(7): 288–294.
[12] Stock W D, Dlamini T S, Cowling R M. Plant induced fertile islands as possible indicators of desertification in a succulent desert ecosystem in northern Namaqualand, South Africa. Plant Ecology, 1999, 142(1/2): 161–167. DOI:10.1023/A:1009874328546
[13] Bazihizina N, Barrett-Lennard E G, Colmer T D. Plant growth and physiology under heterogeneous salinity. Plant and Soil, 2012, 354(1/2): 1–19.
[14] ÇulluM A, AydemirS, QadirM, AlmacaA, ÖztürkmenA R, BilgiçA, AǧcaN. Implication of groundwater fluctuation on the seasonal salt dynamic in the Harran Plain, south-eastern Turkey. Irrigation and Drainage, 2010, 59(4): 465–476.
[15] Hajrasuliha S, Baniabbassi N, Metthey J, Nielsen D R. Spatial variability of soil sampling for salinity studies in Southwest Iran. Irrigation Science, 1980, 1(4): 197–208.
[16] Malcolm C V. Production from salt-affected soils. Reclamation and Revegetation Research, 1986, 5(1/3): 343–361.
[17] Miyamoto S, Cruz I. Spatial variability of soil salinity in furrow-irrigated torrifluvents. Soil Science Society of America Journal, 1987, 51(4): 1019–1025. DOI:10.2136/sssaj1987.03615995005100040036x
[18] Johnson D W, Smith S E, Dobrenz A K. Selection for increased forage yield in alfalfa at different NaCl levels. Euphytica, 1992, 60(1): 27–35.
[19] 张妙仙, 杨劲松, 李冬顺. 特大暴雨作用下土壤盐分运移特征研究. 中国生态农业学报, 2004, 12(2): 47–49.
[20] Vetterlein D, Kuhn K, Schubert S, Jahn R. Consequences of sodium exclusion for the osmotic potential in the rhizosphere-comparison of two maize cultivars differing in Na+ uptake. Journal of Plant Nutrition and Soil Science, 2004, 167(3): 337–344. DOI:10.1002/(ISSN)1522-2624
[21] Cetin M, Kirda C. Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water. Journal of Hydrology, 2003, 272(1/4): 238–249.
[22] Corwin D L, Lesch S M. Characterizing soil spatial variability with apparent soil electrical conductivity:Ⅰ. Survey protocols. Computers and Electronics in Agriculture, 2005, 46(1/3): 103–133.
[23] Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytologist, 2008, 179(4): 945–963. DOI:10.1111/nph.2008.179.issue-4
[24] Yakir D, Yechieli Y. Plant invasion of newly exposed hypersaline Dead Sea shores. Nature, 1995, 374(6525): 803–805. DOI:10.1038/374803a0
[25] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651–681. DOI:10.1146/annurev.arplant.59.032607.092911
[26] Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress:a review. Annals of Botany, 2009, 104(7): 1263–1280. DOI:10.1093/aob/mcp251
[27] Maathuis F J M. Sodium in plants:perception, signalling, and regulation of sodium fluxes. Journal of Experimental Botany, 2014, 65(3): 849–858. DOI:10.1093/jxb/ert326
[28] Ruiz-Lozano J M, Porcel R, Azcón C, Aroca R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63(11): 4033–4044. DOI:10.1093/jxb/ers126
[29] Gupta B, Huang B R. Mechanism of salinity tolerance in plants:physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 2014: 701596.
[30] Deinlein U, Stephan A B, Horie T, Luo W, Xu G H, Schroeder J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371–379. DOI:10.1016/j.tplants.2014.02.001
[31] Sun J J, Yang G W, Zhang W J, Zhang Y J. Effects of heterogeneous salinity on growth, water uptake, and tissue ion concentrations of alfalfa. Plant and Soil, 2016, 408(1/2): 211–226.
[32] Bingham F T, Garber M J. Zonal salinization of the root system with NaCl and boron in relation to growth and water uptake of corn plants. Soil Science Society of America Journal, 1970, 34(1): 122–126. DOI:10.2136/sssaj1970.03615995003400010033x
[33] Harshberger J W. An hydrometric investigation of the influence of sea water on the distribution of salt marsh and estuarine plants. Proceedings of the American Philosophical Society, 1911, 50(201): 457–496.
[34] Davies W J, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. Journal of Plant Growth Regulation, 2005, 24(4): 285–295. DOI:10.1007/s00344-005-0103-1
[35] Cui B S, He Q, Zhang K J, Chen X. Determinants of annual-perennial plant zonation across a salt-fresh marsh interface:a multistage assessment. Oecologia, 2011, 166(4): 1067–1075. DOI:10.1007/s00442-011-1944-x
[36] Thorburn P J, Hatton T J, Walker G R. Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests. Journal of Hydrology, 1993, 150(2/4): 563–587.
[37] Hao G Y, Jones T J, Luton C, Zhang Y J, Manzane E, Scholz F G, Bucci S J, Cao K F, Goldstein G. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients:impacts on hydraulic architecture and gas exchange. Tree Physiology, 2009, 29(5): 697–705. DOI:10.1093/treephys/tpp005
[38] Jolly I D, Walker G R, Thorburn P J. Salt accumulation in semi-arid floodplain soils with implications for forest health. Journal of Hydrology, 1993, 150(2/4): 589–614.
[39] Bornman T G, Adams J B, Bate G C. Freshwater requirements of a semi-arid supratidal and floodplain salt marsh. Estuaries, 2002, 25(6): 1394–1405. DOI:10.1007/BF02692233
[40] Carter J L, Veneklaas E J, Colmer T D, Eastham J, Hatton T J. Contrasting water relations of three coastal tree species with different exposure to salinity. Physiologia Plantarum, 2006, 127(3): 360–373. DOI:10.1111/j.1399-3054.2006.00633.x
[41] 张勃, 孟宝, 郝建秀, 丁文晖. 干旱区绿洲-荒漠带土壤水盐异质性及生态环境效应研究——以黑河中游张掖绿洲为例. 中国沙漠, 2006, 26(1): 81–84.
[42] 张建兵, 杨劲松, 姚荣江, 余世鹏, 李芙荣. 田块尺度下的苏北滩涂新垦农田土壤盐分空间变异性分析. 灌溉排水学报, 2013, 32(1): 39–42.
[43] 冉雯瑞, 蔡永立, 何斌, 谢长坤, 赵小雷. 浙江温岭海涂围垦区土壤盐分空间异质性分析. 土壤通报, 2013, 44(4): 839–843.
[44] Bennett O, Kandala N B, Ji C, Linnane J, Clarke A. Spatial variation in heart failure and air pollution in Warwickshire, UK:an investigation of small scale variation at the ward level. The Lancet, 2014, 384(S2).
[45] Bennett S J, Barrett-Lennard E G, Colmer T D. Salinity and waterlogging as constraints to saltland pasture production:A review. Agriculture Ecosystems and Environment, 2009, 129(4): 349–360. DOI:10.1016/j.agee.2008.10.013
[46] Shalhevet J. Using water of marginal quality for crop production:major issues. Agricultural Water Management, 1994, 25(3): 233–269. DOI:10.1016/0378-3774(94)90063-9
[47] Bleby T M, Aucote M, Kennett-Smith A K, Walker G R, Schachtman D P. Seasonal water use characteristics of tall wheatgrass[Agropyron elongatum (Host) Beauv.] in a saline environment. Plant, Cell and Environment, 1997, 20(11): 1361–1371. DOI:10.1046/j.1365-3040.1997.d01-29.x
[48] Ghassemi F, Close A, Kellett J R. Numerical models for the management of land and water resources salinisation. Mathematics and Computers in Simulation, 1997, 43(3/6): 323–329.
[49] Hamza M A, Aylmore L A G. Soil solute concentration and water uptake by single lupin and radish plant roots. Ⅰ. Water extraction and solute accumulation. Plant and Soil, 1992, 145(2): 187–196. DOI:10.1007/BF00010347
[50] Sinha B K, Singh N T. Salt distribution around roots of wheat under different transpiration rates. Plant and Soil, 1976, 44(1): 141–147. DOI:10.1007/BF00016962
[51] Lycoskoufis I H, Savvas D, Mavrogianopoulos G. Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. Scientia Horticulturae, 2005, 106(2): 147–161. DOI:10.1016/j.scienta.2005.02.022
[52] Attia H, Karray N, Rabhi M, Lachaâl M. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiologiae Plantarum, 2008, 30(5): 723–727. DOI:10.1007/s11738-008-0172-4
[53] Hajji M, Lachaâl M, Soltani A, Grignon C. Large accumulation of sodium in leaves may be compatible with normal growth//Horst W J, Schenk M K, Bürkert A, Claassen N, Flessa H, Frommer W B, Goldbach H, Olfs H W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N V, Wittenmayer L, eds. Plant Nutrition. Netherlands:Springer, 2001:416-417.
[54] Zekri M, Parsons L R. Response of split-root sour orange seedlings to NaCl and polyethylene glycol stresses. Journal of Experimental Botany, 1990, 41(1): 35–40. DOI:10.1093/jxb/41.1.35
[55] Bazihizina N, Colmer T D, Barrett-Lennard E G. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia:growth, photosynthesis, water relations and tissue ion concentrations. Annals of Botany, 2009, 104(4): 737–745. DOI:10.1093/aob/mcp151
[56] Hamed K B, Messedi D, Ranieri A, Abdelly C. Diversity in the response of two potential halophytes (Batis maritima and Crithmum maritimum) to salt stress//Abdelly C, Öztürk M, Ashraf M, Grignon C, eds. Biosaline Agriculture and High Salinity Tolerance. Birkhäuser Basel:Springer, 2008:71-80.
[57] Messedi D, Labidi N, Grignon C, Abdelly C. Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. Journal of Plant Nutrition and Soil Science, 2004, 167(6): 720–725. DOI:10.1002/(ISSN)1522-2624
[58] Bower C A, Ogata G, Tucker J M. Rootzone salt profiles and alfalfa growth as influenced by irrigation water salinity and leaching fraction. Agronomy Journal, 1969, 61(5): 783–785. DOI:10.2134/agronj1969.00021962006100050039x
[59] Ingvalson R D, Rhoades J D, Page A L. Correlation of alfalfa yield with various index of salinlly. Soil Science, 1976, 122(3):145-153.
[60] Bazihizina N, Barrett-Lennard E G, Colmer T D. Plant responses to heterogeneous salinity:growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. Journal of Experimental Botany, 2012, 63(18): 6347–6358. DOI:10.1093/jxb/ers302
[61] Dirksen C. Relationship between root uptake-weighted mean soil water salinity and total leaf water potentials of Alfalfa. Irrigation Science, 1985, 6(1): 39–50.
[62] 孙娟娟. 紫花苜蓿幼苗对盐分空间异质性分布的响应机制. 北京: 中国农业大学, 2016.
[63] 杨婷, 谢志霞, 喻琼, 刘小京. 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 2014, 22(9): 1074–1078.
[64] Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 2012, 63(1): 43–57. DOI:10.1093/jxb/err266
[65] Kong X Q, Luo Z, Dong H Z, Eneji A E, Li W J. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. Journal of Experimental Botany, 2012, 63(5): 2105–2116. DOI:10.1093/jxb/err420
[66] Azaizeh H, Gunse B, Steudle E. Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiology, 1992, 99(3): 886–894. DOI:10.1104/pp.99.3.886
[67] West D W. Water use and sodium chloride uptake by apple trees Ⅰ. The effect of non-uniform distribution of sodium chloride in the root zone. Plant and Soil, 1978, 50(1/3): 37–49.
[68] Kirkham M B, Gardner W R, Gerloff G C. Stomatal conductance of differentially salinized plants. Plant Physiology, 1972, 49(3): 345–347. DOI:10.1104/pp.49.3.345
[69] Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91(5): 503–527. DOI:10.1093/aob/mcg058
[70] Cheeseman J M. Pump-leak sodium fluxes in low salt corn roots. The Journal of Membrane Biology, 1982, 70(2): 157–164. DOI:10.1007/BF01870225
[71] Schubert S, Läuchli A. Sodium exclusion mechanisms at the root surface of two maize cultivars. Plant and Soil, 1990, 123(2): 205–209. DOI:10.1007/BF00011269