生态学报  2016, Vol. 36 Issue (8): 2113-2122

文章信息

刘魏魏, 王效科, 逯非, 欧阳志云
LIU Weiwei, WANG Xiaoke, LU Fei, OUYANG Zhiyun
造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响
Influence of afforestation, reforestation, forest logging, climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem
生态学报, 2016, 36(8): 2113-2122
Acta Ecologica Sinica, 2016, 36(8): 2113-2122
http://dx.doi.org/10.5846/stxb201411022143

文章历史

收稿日期: 2014-11-02
网络出版日期: 2015-08-24
造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响
刘魏魏1, 2, 王效科1 , 逯非1, 欧阳志云1    
1. 中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085;
2. 中国科学院大学, 北京 100049
摘要: 森林生态系统具有吸收大气CO2、缓解气候变化的作用。造林再造林作为京都议定书认可的大气CO2减排途径,是提高森林固碳能力的低成本、有效策略。森林生态系统固碳能力还受森林采伐、气候变化、大气CO2浓度升高、火灾以及虫害等自然因素和人为因素的强烈影响。综述了全球和区域造林再造林的固碳能力,以及目前较受重视的一些因素(森林采伐、气候变化、大气CO2浓度升高、火灾以及虫害)对森林生态系统固碳能力的影响。结果表明,全球造林再造林固碳能力为148-2400 TgC/a;采伐造成的全球森林碳损失最大为900 TgC/a,其次是火灾为300 TgC/a,虫害造成森林碳释放最小在2-107 TgC/a之间。建议在今后的研究中,应关注固碳措施和多种环境因素对森林生态系统固碳能力,尤其是对森林土壤固碳能力的影响,严格控制森林采伐和火灾发生,以及减少或避免造林再造林活动引起的碳泄漏。
关键词: 森林生态系统    造林再造林    采伐    气候变化    CO2浓度升高    火灾    虫害    固碳能力    
Influence of afforestation, reforestation, forest logging, climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem
LIU Weiwei1, 2, WANG Xiaoke1 , LU Fei1, OUYANG Zhiyun1    
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Controlling the rising levels of atmospheric greenhouse gas (GHG, especially CO2) concentration to mitigate global climate change is arguably the most challenging environmental issue encountered by China and many other countries. Forest ecosystem, which is an integral part of terrestrial ecosystems, can play a significant role in absorbing CO2 from the atmosphere and aiding global climate change mitigation, subsequently contributing to meet the national commitment and demand of carbon emission reduction and carbon sink enhancement. Afforestation and reforestation, as recognized in the Kyoto Protocol, provide relatively low-cost and effective solutions to enhance forest ecosystem carbon sink. Meanwhile, the carbon sequestration capacity of a forest ecosystem is enormously affected by various natural and anthropogenic factors, which may convert the forest ecosystem from a carbon sink to a source. Therefore, the understanding of the influence of afforestation, reforestation, and those factors on the carbon sequestration capacity of the forest ecosystem is important for the accurate estimation of global and regional forest ecosystem carbon budget. In this study, the recent research progresses on the effect of afforestation and reforestation on carbon sequestration capacity of global and regional forest has been reviewed, along with the influence of several natural and anthropogenic disturbances (i.e., forest logging, climate change, CO2 concentration enhancement, fire, and insect). It was indicated that the carbon sequestration capacity of global afforestation and reforestation was in the range of 148 to 2400 TgC/a, varying regionally as follows: tropical forest (1700 TgC/a) > boreal forest (700 TgC/a) > temperate forest (27-500 TgC/a). Furthermore, besides climate change and CO2 concentration rise, other factors that caused carbon emissions in the forest have been summed up and listed below. Forest logging caused the highest carbon emissions (900 TgC/a), followed by forest fire (300 TgC/a), and insects caused the lowest carbon emissions (2-107 TgC/a). Henceforth, more attention should be paid on the influence of carbon sequestration measures and integrated effects of multiple forms of disturbance on the carbon sequestration capacity of forest ecosystems, especially carbon sequestration capacity of forest soil. Furthermore, controlling forest logging and fire, along with reducing or avoiding additional carbon leakage due to afforestation and reforestation would also greatly contribute to forest carbon sequestration.
Key words: forest ecosystem    afforestation and reforestation    logging    climate change    CO2 concentration rise    fire    insect    carbon sequestration capacity    

由于人类矿物燃料燃烧和土地利用变化导致大气CO2浓度急剧上升[1],并引发了一系列全球环境问题。森林作为重要的陆地生态系统在吸收大气CO2、缓解气候变化中的作用已经得到了广泛的共识[2, 3, 4, 5]。目前,全球森林碳储量在652—927 PgC之间[2, 6],约占全球有机碳储量的33%—46%[7, 8, 9];固碳能力达到4.02 PgC/a[2]。森林固碳能力受造林再造林、森林管理、土地利用变化、森林采伐、气候变化、CO2浓度、火灾、病虫鼠害和暴风雪灾害等人为因素和自然因素的强烈干扰。在目前大气CO2浓度下,森林生态系统净初级生产力并没有达到饱和,随着大气CO2浓度升高和CO2施肥作用,以及实施造林再造林等管理措施森林净初级生产力还将进一步增加[10],固碳能力也将进一步提高。而土地利用变化、森林采伐和退化等因素易引起森林生态系统碳排放(目前造成森林碳排放约为2.95 PgC/a[2, 11])。因此未来森林碳库水平仍由碳输入和碳输出两方面共同决定,即通过固碳措施来增加森林碳库的碳输入以及通过降低干扰来减少森林碳库释放。另外,由于全球各地气候条件、森林管理措施和森林灾害呈现较大的差异性,因此这些因素对全球森林固碳能力影响也呈现较大的区域差异性。探究全球和区域森林管理措施和固碳能力,以及气候变化和自然灾害对固碳能力的影响,对预测森林生态系统固碳作用、缓解大气CO2浓度增加和管理全球碳循环具有重要作用。当前,已有很多关于全球、区域或者某一具体地点的森林固碳措施和固碳能力,以及单一或几个干扰因素对森林固碳能力影响的研究[2, 3, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20],本文在搜集已发表文献基础上,综合论述了全球和区域造林再造林的固碳能力,以及森林采伐、气候变化、CO2浓度、火灾和虫害等主要干扰因素对森林固碳能力的影响,以期探究这些因素对森林生态系统固碳能力的影响及其在缓解气候变化中的作用。

1 造林再造林对全球和区域森林固碳能力影响

造林和再造林是指在原来没有森林的土地上植树造林。造林是指在很长时间以来没有森林的土地上植树造林,而再造林是指在近期没有森林的土地上植树造林。京都议定书认为造林和再造林可以减少矿物燃料燃烧释放的CO2,是增加陆地生态系统固碳的可行方式[10]。目前,全球造林再造林面积有264Mhm2,占全球森林面积的6.6%[6]。造林和再造林通过植被生长和再生提高森林生态系统生产力,并把大量的碳固定在新生植被[12]和死有机物质中[21],在树木成熟和土壤碳达到平衡之前,固碳一直在进行,这个过程一般持续数十年甚至百年[22]。造林和再造林不仅能固定大量的碳,相对于其他固碳措施来说还具有成本优势[23, 24]。因此,过去十多年,全球进行了大面积的造林和再造林,2000—2010年造林和再造林分别以5.6Mhm2/a和5.3Mhm2/a的速度增加[6]。全球造林再造林主要集中在撒哈拉以南的非洲、拉丁美洲、以及北半球的欧洲、美国和中国等地区[12]。造林再造林对增加全球森林资源[6]、提高森林生态系统固碳能力产生了重要影响。

全球造林再造林固碳能力为148—2400 TgC/a[2, 7, 10, 25, 26, 27],固碳速率在0.14—9.5 t C hm-2 a-1之间[7, 28, 29, 30, 31],可以抵消全球人为CO2排放(约为5200 TgC/a)的2.8%—46.2%。预计21世纪中期全球造林再造林固碳能力可以达到310—2721 TgC/a[12, 32],可以抵消全球人为CO2排放的6.0%—52.3%。

从区域和国家来看,非洲和拉丁美洲造林再造林面积为15.4—31.6Mhm2和14.9—40.8Mhm2[6, 25],其中非洲中南部和拉丁美洲中部造林再造林固碳速率相对较高,均大于3 t C hm-2a-1[28]。Houghton等[33]利用簿记模型估算了巴西亚马逊地区弃耕农田再造林植被固碳速率在1.5—5.5 t C hm-2a-1之间,再造林25a后森林生物量可以恢复到原来水平的70%,接下来50a可以恢复到原来水平[33]。Humpender等[12]利用MAgPIE模型预测21世纪末撒哈拉以南的非洲和拉丁美洲地区造林固碳速率将达到20 t C hm-2a-1。总体来说,目前非洲、拉丁美洲造林再造林固碳速率在1.5—5.5 t C hm-2a-1之间。

北半球造林再造林主要集中在发达国家[34]。欧洲造林再造林面积约69.3Mhm2[6]。Zaehle等[35]基于LPJ-DGVM模型预测到2100年欧盟联合体(包括欧盟15国、挪威和荷兰)造林净固碳能力在17—38 TgC/a之间,可以抵消同时期碳排放的1.9%—2.9%。其中英国未来造林面积将以8khm2/a速率增长。2020年造林固碳能力为0.58 TgC/a(Thomson等[36]利用C-FLOW模型估算得出),英国森林每年可以抵消4.9Tg碳排放[37]。到2050年森林面积将占国土面积的16%,固碳能力将抵消同时期温室气体排放的10%[38];乌克兰适宜造林面积有2.29Mhm2,造林可以增加该国森林面积23%。未来40a造林的固碳能力为4.6 TgC/a,可以抵消该国年碳排放的4.6%[37];荷兰尽管实施了造林计划,但由于其国土面积小,预计造林面积仅0.007Mhm2,通过造林来缓解气候变化的空间较小[37]。综合以上可以看出,未来欧洲造林再造林固碳能力在0.58—38 TgC/a之间。

北美洲地区造林再造林面积约37.5Mhm2[6]。其中加拿大魁北克东南部造林50a后固碳速率达到1.5 t C hm-2 a-1(Tremblay等[39]利用实测方法得出),后续的固碳能力将继续增大。墨西哥再造林是森林面积增加的主要因素,约占该国森林面积增量的98%。de Jong等[40]利用IPCC指南方法估算了墨西哥再造林固碳速率为0.7 t C hm-2 a-1,再造林植被固碳能力可以抵消该国森林砍伐碳释放的13%。北美碳汇一半来自于美国造林和再造林[15],Woodbury等[41, 42]利用历史土地利用变化数据和Forcarb模型估算了美国造林的固碳能力为17 TgC/a;Benítez等[28]利用基于网格模型估算了美国中部造林再造林固碳速率均大于3t C hm-2 a-1;Niu等[16]利用土地覆盖和土壤地理数据以及多种模型估算了美国中西部造林后20a的固碳速率为4 t C hm-2 a-1,可以抵消当地化石燃料碳排放的8%[16]。可以看出,北美造林再造林固碳速率在0.7—4 t C hm-2 a-1之间。

2000s亚洲地区造林再造林面积分别以4.9Mhm2/a和2.5 Mhm2/a的速度大幅度增长,这主要是中国造林引起的(造林速率3.0—4.1Mhm2/a)[6, 37]。南亚造林面积以0.3Mhm2/a速度增加,固碳能力为13 TgC/a(Patra等[17]利用簿记法估算得出),其中印度造林的固碳能力是该区域较强的国家。东亚地区在过去30a由于实施造林再造林工程,森林面积增加了16.9Mhm2,森林植被固碳能力为66.9 TgC/a,固碳速率为0.23 t C hm-2 a-1[3]。其中日本造林再造林约10.33Mhm2[3],占该国森林面积的40%[43]。Fang等[3]利用森林清查数据和生物量连续因子变化函数法估算了造林植被固碳速率为1.38 t C hm-2 a-1。日本森林植被碳储量的增加主要是由造林再造林植被碳密度增加(或者森林生长)引起的(91.1%),而森林面积扩张对植被碳储量增加作用(8.9%)很小[3];中国是世界上造林再造林面积最大的国家[6],2000s造林再造林面积达36.15Mhm2[3],约占森林面积的23%[44],植被固碳能力为47.5 TgC/a,固碳速率为0.54t C hm-2 a-1[3]。预计到2050年造林再造林面积将再增加21.7Mhm2[45],固碳能力在57.1—62.8 TgC/a之间[44, 45],可以抵消同时期化石燃料碳排放的4.6%—7.1%[44]。另外,中国森林植被碳储量增加主要是由森林面积扩张引起的(58.1%),植被碳密度增加的作用(41.9%)相对较小[3]。可以看出,中国森林植被碳密度还有很大的提升空间,未来固碳潜力还很大。总体来说亚洲地区造林再造林固碳能力在13—66.9 TgC/a之间,固碳速率在0.23—1.38 t C hm-2 a-1之间。

总体上看,热带地区造林再造林固碳能力为1700 TgC/a[2],固碳速率在4—8 t C hm-2 a-1之间[7, 28]。非洲和拉丁美洲等热带地区造林再造林固碳速率(1.5—5.5 t C hm-2 a-1)也大于温带的欧洲、北美洲和亚洲地区造林再造林固碳速率(0.23—4 t C hm-2 a-1);温带地区造林再造林固碳能力为27—500 TgC/a[7, 10],固碳速率为1.5—4.5 t C hm-2 a-1[7],其中北美造林再造林固碳速率(0.7—4 t C hm-2 a-1)大于亚洲造林再造林固碳速率(0.23—1.38 t C hm-2 a-1);寒带地区造林固碳能力为700 TgC/a[27];固碳速率相对较低,均小于1 t C hm-2 a-1[28],这可能是由于造林降低了太阳反射率,从而减缓了森林从大气中吸收CO2的能力[12]

造林再造林的固碳能力受土地利用状况、土壤类型、造林树种、森林管理、干扰和气候等多方面影响[16, 21, 29, 43, 46],并造成固碳能力估算的不确定性。造林再造林主要是增加植被碳固定,一般认为植被固碳量占总固碳量的2/3[47]。造林再造林后土壤碳变化差异很大,一般在±1.5 t C hm-2 a-1之间[39]。例如,Tremblay等[39]实测得出加拿大魁北克地区造林50a后土壤碳损失0.4 t C hm-2 a-1[39];Paul等[48]通过对比实验研究发现俄亥俄州农田再造林50a后落叶林土壤固碳速率在0.15—0.58 t C hm-2 a-1之间,而松柏林土壤碳损失0.85 t C hm-2 a-1。造林再造林后土壤碳变化主要取决于造林再造林时间和造林前土壤状况[47]。一般认为,造林再造林后数几十年内(有的为10a,有的甚至为50a),土壤有机碳(SOC)呈降低趋势;随后开始缓慢积累,并随着立木成熟积累速度加快[39]。这可能是由于造林再造林后的幼龄林中,死生物量低造成枯枝落叶少,枯枝落叶带来的碳输入小于土壤呼吸引起的碳损失[39]。另外,造林前SOC高的,造林后5—10a内呈下降趋势,随后再升高[48];而造林前SOC低的,造林后呈现上升趋势[16, 39]。尽管从长期看造林再造林可以增加土壤碳输入,但和土壤原碳储量相比,输入的碳非常少,估算存在极大的不确定性;并且在树种、林龄和种植密度间有很大的变异性。这使得对造林再造林土壤碳输入的估算非常困难[49]

2 采伐

采伐是影响森林固碳能力最主要的森林管理方式。全球森林采伐量约3×109m3[6],极大地影响了全球和区域森林固碳能力。采伐直接降低森林植被密度或清除森林植被,造成森林生产力下降或消失,碳吸收能力减少,同时采伐使植被碳转移到木材产品和生物燃料中,造成森林生态系统碳储量减少和固碳能力降低。美国森林采伐造成碳损失(或转移)为18.1 TgC/a(US EPA[50]利用清单数据、IPCC[51, 52]方法估算得出)。1990—2008年加拿大管理森林采伐对森林生态系统固碳影响情况如下,Stinson等[53]基于清单数据利用CBM-CFS3经验模型估算的碳损失为45 TgC/a,该期间森林整体上呈现碳汇;而根据联合国气候变化公约(UNFCCC)方法估算的19年间有8a森林呈现碳源。这可能是由于UNFCCC方法忽略了采伐植被的碳转移,没有考虑木材产品中碳的存留时间,认为采伐植被的碳立即排放到大气中,过高地估计了采伐引起的碳排放。尽管木材采伐减少了森林生态系统碳储量,但不导致温室气体直接排放。另外,薪材替代化石燃料燃烧还能减少碳排放[53]。因此,有些研究认为[54, 55]采伐是减少碳排放方法之一,但大多数研究[50, 53, 56]认为采伐后幼林替代成熟林导致净碳损失。总体来看,采伐造成全球森林生态系统碳释放为900 TgC/a[26](包括碳转移590 TgC/a,实际碳排放310 TgC/a),约占全球碳排放的17%。但由于采伐树种、材积、密度、采伐规范和技术、木材产品生命周期以及估算方法的差异,采伐对森林生态系统固碳影响还存在很大的不确定性。

采伐后森林植被密度降低,促进了林木再生和林下植物生长,从而增加了森林生产力,促进植被碳固定[57]。Houghton等[26]利用簿记法研究了采伐后全球森林再生的固碳能力为1120 TgC/a;Albani等[57]利用ED模型研究了采伐后美国东部森林再生的固碳能力为100 TgC/a。采伐后森林固碳能力还受采伐频率和采伐后森林结构的影响[56]。另外,当采伐对森林植被碳储量影响不大时,采伐可能增加森林粗木质残体的碳储量,而粗木质残体一般不随木材从森林中移除,森林粗木质残体碳储量的增加促进了营养元素和水分循环,从而也对森林生态系统碳收支产生影响[58]

采伐对森林土壤固碳能力的影响受多种因素共同作用。采伐影响输入到土壤的残落物数量和质量,残落物数量和质量又改变土壤微生物群落组成和活性。另外,采伐还通过影响气候来影响植被和微生物生长过程,从而影响土壤碳平衡。一般采伐后的几年至数十几年内土壤碳储量降低[59],随后又上升。这是由于采伐后森林植被的移除使输入到土壤的凋落物数量减少,同时微生物分解速率的增加导致碳释放增加;土壤碳储量降至最低点后,随着林木再生、有机物质分解恢复到采伐前水平以及凋落物输入增加导致土壤SOC开始积累[18]。Nave等[58]利用Meta分析研究了温带森林采伐后5a内土壤碳储量减少了8%。尽管采伐后森林土壤碳储量减少,但由于土壤碳库种类、大小、周转时间和碳分子特性的差异较大,森林土壤受采伐影响不如植被敏感。

3 气候变化和CO2浓度升高

森林生态系统固碳还受气候变化和CO2浓度升高的影响。北半球森林生态系统作为一个稳定碳汇主要原因之一是气候变化和CO2浓度升高促进了植被再生[57]。气候变化(尤其是温度升高)和CO2浓度升高能够促进植物生长[60],提高森林生产力[9, 18, 19],增加输入到土壤的枯枝落叶数量和土壤有机碳含量[18, 61],从而有利于森林碳固定[13]。评价气候变化和CO2浓度升高对森林固碳能力的影响,对于研究未来气候条件下森林在减缓大气变化中的作用有重要意义。Dib等[18]利用Rothc和CENTURY模型模拟显示,到本世纪末温度和CO2浓度升高能够使美国新罕布什尔州落叶林SOC含量比当前水平增加7%;Bellassen等[62]基于清单数据,利用ORCHIDEE-FM模型研究了气候变化和大气CO2浓度升高能够使欧洲森林生态系统净初级生产力(NPP)增加0.013 t hm-2 a-1;Hudibury等[13]利用CLM4模型对美国俄勒冈州森林固碳能力的研究表明,在现有管理措施以及温度和CO2浓度升高情况下,2100年森林净固碳能力将增加32%—68%,显著抵消火灾和其他扰动造成的森林碳排放。总体来说,温度和CO2浓度升高两者相互作用将使森林生态系统碳输入增加7%—68%,从而提高森林生态系统固碳能力[13, 63]

温度和CO2浓度升高单因素对森林固碳能力的影响同样取决于碳输入与输出的平衡。温度升高可以提高植被光合作用和NPP,增加凋落物数量和土壤碳输入。然而温度升高也会提高北方森林有机物质分解速率,促进土壤呼吸[18],增加土壤碳输出。另外,温度升高也增加了蒸腾作用,降低土壤湿度,增加干旱频率和强度,有可能降低土壤呼吸和有机质的分解[18]。Dib等[18]利用Rothc模型模拟的在不考虑CO2施肥作用、未来各种温度升高情景下美国新罕布什尔州森林土壤碳输出都大于碳输入,呈现碳源状态。Masahito等[64]利用涡度相关法研究了温度对阿拉斯加森林固碳的影响,结果表明由于年际气候波动,9a内该区域秋天温度升高了0.22℃ /a导致黑云杉林由碳汇变成碳源,这可能是由于秋天温度升高引起森林呼吸作用引起的碳输出大于光合作用引起的碳输入造成的。

CO2浓度升高对森林固碳能力的影响涉及的因素较多。CO2浓度升高能够提高光合作用效率,增加NPP和凋落物数量。另外CO2浓度升高还有可能促进根系生长[18],间接地影响土壤碳平衡。Talhelm等[19]基于实地调查研究了CO2浓度升高使美国威斯康辛州森林NPP提高39%,森林碳储量增加11%;Albani等[57]利用ED模型研究了CO2浓度升高下,1980—2000年美国东部森林固碳能力为170—220TgC/a,21世纪达到700 TgC/a,CO2施肥是增加该区域碳汇的主要原因。但也有学者[60, 65]认为短期内CO2浓度升高能够促进森林增长,增加森林SOC积累;但长期看会促进森林土壤微生物呼吸,缩短SOC周转时间,减少森林SOC积累。另外,CO2浓度升高也能够提高森林水分利用效率,促进植被生长,增加碳固定[13, 38],然而大气CO2浓度升高下,水分利用效率的提高也增加了森林土壤含水量[35],从而促进干旱半干旱区森林土壤微生物分解作用,也有可能增加碳释放[60]。由于CO2浓度对森林固碳能力的影响涉及因素较多,以及气候变化和CO2浓度变化的多样性,气候变化和CO2浓度对森林固碳能力的研究将是以后森林碳循环研究的重点和难点。

4 火灾

全球每年约有1%森林受到火灾的严重影响[6],火灾引起的森林碳排放(约0.3PgC/a[66])约占全球碳排放的5.8%。火灾不仅能够直接把森林有机物质分解成无机物质、水蒸气和CO2,造成温室气体排放[20, 22],还间接改变森林生产力[20],影响植被结构和组成、土壤性质以及养分循环过程,从而影响森林生态系统碳循环[67]。正确评估火灾对森林固碳能力的影响,将有助于全面评价森林在缓解气候变化中的作用。全球森林火灾碳排放主要集中在东亚和北美地区,热带封闭森林较少[20]。中国森林每年受火灾面积约0.95Mhm2[68],王效科等[69]和Lü等[70]分别根据森林火灾统计资料、森林火灾统计资料结合遥感数据,利用排放因子法和排放比法估算了中国森林火灾碳排放在10.2—11.3 TgC/a之间;Hayes等[71]利用TEM模型估算了1997—2006年亚洲寒带西伯利亚北部森林火灾碳释放为255 TgC/a,北美寒带森林火灾碳排放为51 TgC/a;Stinson等[53]基于清单数据,利用CBM-CFS3经验模型估算了1990—2008年加拿大森林火灾碳释放为23 TgC/a;US EPA[50]利用清单数据和IPCC[51, 52]方法估算了美国48个州以及阿拉斯加森林火灾引起的碳排放为242.7 TgC/a。总体来说,目前全球森林火灾碳释放约为300 TgC/a[66],低于森林采伐造成的碳释放。

火灾也影响森林土壤的固碳能力。火灾可以直接燃烧部分土壤有机碳,使土壤有机碳层变薄;另外,火灾后植被冠层破坏或者完全去除,使太阳辐射能量透过冠层到达地表,火灾后地表热能也直接传递到土壤,都导致土壤温度升高促进土壤呼吸、增加碳释放。Poirier等[72]通过对加拿大魁北克地区14个受火灾干扰后森林土壤实际测定发现,火灾使北方森林SOC含量由449.9g/kg降低到419.9 g/kg;Amiro等[73]利用涡度相关法发现受火灾干扰10a内北美森林土壤为碳源,以后才变为碳汇。然而,Berenguer等[74]利用GLMMs模型研究表明,火灾干扰后亚马逊森林土壤碳密度与未受火灾干扰森林土壤碳密度相差不大,这可能是由于热带温度本来就很高,火灾引起的土壤温度上升并未促进土壤微生物分解作用和土壤碳释放。

区域研究认为全球气候变暖环境下,未来寒带发生火灾的频率、范围和强度还可能增大[71, 75, 76]。Kloster等[77]利用CLM-CN模型预测了2075—2099年全球森林火灾造成的碳排放将超过现在的17%—62%;Hudiburg等[13]利用CLM4模型预测了美国俄勒冈州森林火灾碳释放将从现在的3.2 TgC/a增长到2100年的4.0 TgC/a;Liu等[78]预计2081—2100年中国东北寒带森林火灾发生密度可能增加30%—230%,人为因素引起的火灾将超过气候变化对火灾的影响,火灾将造成该区域碳大量释放。因此,维持森林生态系统植被结构、固碳功能和其他环境功能必须控制火灾发生,尤其是控制高发区域火灾的发生。

5 虫害

全球受虫害影响的森林约有34Mhm2[6]。北半球加拿大、美国、欧洲和东亚等地区森林虫害爆发严重。尤其是北美地区,近几十年来约23 Mhm2森林爆发虫害[6],每年北美森林虫害爆发面积约占全球森林虫害面积的68%,极大地影响该地区森林碳循环[14]。在遭受虫害后的几年到数十年内,森林固碳能力降低。这是由于遭受虫害后,植被再生变慢,森林初级生产力(GPP)大幅度降低。遭病虫害严重的树木甚至死亡,死亡树木分解又释放大量CO2,尤其在树木死亡后的几年内,枯死有机物质数量大,分解速率快,CO2释放量大。GPP降低和呼吸(Rh)增加造成森林净生产力(NEP)和碳储量减少[79]。Brown等[80]利用涡度相关法研究了加拿大不列颠哥伦比亚森林在受松山甲虫影响的最初1—2a NEP降低0.33—0.82 t hm-2 a-1;Stinson等[53]基于清单数据,利用CBM-CFS3经验模型估算了1990—2008年松山甲虫造成加拿大管理森林碳损失26.8 TgC/a,2005年更高达107 TgC/a;Dymond等[79]利用CBM-CFS3模型研究发现加拿大魁北克东部10.6Mhm2森林受云杉蚜虫侵害碳释放为2 TgC/a,预计2011—2024年云杉蚜虫的爆发将使该区域由碳汇变成碳源;Metsaranta等[81]利用CBM-CFS3模型预测虫害使2010—2100年加拿大管理森林均呈现碳源。由于虫害面积、情景假设差异和估算的不确定性,虫害造成森林生态系统碳释放还存在很大的变化范围,总结以上结果看出虫害引起森林碳释放在2—107 TgC/a之间,约占全球碳排放的0.04%—2.1%。

但从长期看,随着时间推移,虫害造成的枯死有机物质数量降低,呼吸释放的碳也减少;树木死亡促进了林下植被生长以及树木再生增加了GPP。GPP增加和Rh减少提高了森林NEP和碳储量[79]。Edbury等[82]利用CLM4过程模型研究发现山松甲虫爆发后100a内美国西部森林都为碳源,100a后才为碳汇。Albani等[83]利用ED模型和随机模型研究了铁杉长毛球蚜对美国东部森林的影响,结果表明2000—2040年该区域森林固碳能力减少11 TgC/a;2040—2100年碳吸收为0.89 PgC,比未受虫害影响时增加12%。可以看出,受虫害影响后数几十年至百年内森林为碳源,以后才为碳汇。另外,受虫害后森林表现为碳源或碳汇还受虫害爆发强度的影响。虫害爆发较轻时森林为碳汇;爆发严重时,森林受虫害后的数几十年都为碳源。Medvigy等[84]利用ED2模型研究了百年时间尺度上舞毒蛾虫害强度对美国新泽西州森林固碳能力的影响,结果表明随着虫害强度增加森林NEP呈线性降低。虫害爆发的周期也影响森林碳源/汇,周期为5—15a时森林生产力和生物量明显降低[84]

6 总结与展望

造林再造林、气候变化和CO2浓度增加可以通过扩大森林面积或者增加森林碳输入实现森林生态系统碳固定。造林和再造林是增加全球森林固碳能力的主要因素,全球造林再造林固碳能力为148—2400 TgC/a[2, 7, 10, 25, 26, 27];气候变化和CO2浓度增加也使森林碳储量比当前水平增加7%—68%[13, 18, 19];而森林采伐、火灾和虫害则通过降低森林生产力和碳输入,降低森林固碳能力。森林采伐造成全球森林碳损失900 TgC/a[26],火灾造成森林碳释放300 TgC/a[66],虫害造成森林碳释放在2—107 TgC/a[53, 79]之间。由于情景设定的差异和估算方法的不同,评价造林再造林、森林采伐、气候变化、CO2浓度、火灾和虫害等对森林生态系统固碳能力的影响还存在很大不确定性。但是可以看出造林再造林、气候变化和CO2浓度增加可以在一定程度上提高森林固碳能力,而森林采伐和火灾则造成森林碳损失1200 TgC/a,抵消造林再造林最大固碳能力的一半。因此,建议在森林管理中应严格控制森林采伐和火灾的发生。

目前关于造林和再造林对森林植被固碳能力的研究较多[85],而由于森林土壤固碳估算存在很大的不确定性,就造林和再造林对森林土壤固碳能力的研究相对较少。土壤作为重要的碳汇也有一定的固碳能力,因此今后应注重研究固碳措施对森林土壤固碳能力的影响。目前就造林再造林、采伐、气候变化、CO2浓度、火灾和虫害等单一因素或者几个因素结合对森林生态系统固碳能力的估算较多,但综合这些因素对具体某一区域或国家整个森林生态系统(包括植被层、林下层、草本层、凋落物层和土壤层)碳动态的研究却鲜见报道[74]。森林生态系统作为一个整体系统,其固碳能力受以上多种因素综合影响很大。因此,以后还应该注重多种因素综合对森林生态系统固碳能力的影响。

造林和再造林还会通过活动转移、市场泄漏、排放转移和生态泄漏等途径造成森林生态系统碳泄漏,森林生态系统净固碳能力由固碳措施的固碳能力和温室气体泄漏共同构成,碳泄漏有可能抵消固碳措施的固碳效果,在实施造林和再造林措施时应尽量减少或避免由于活动对造林再造林区或周边地区的森林造成碳泄漏。

参考文献
[1] Le Quéré C, Peters G P, Andres R J, Andrew R M, Boden T, Ciais P, Friedlingstein P, Houghton R A, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker D C E, Bopp L, Canadell J G, Chini L P, Doney S C, Harper A, Harris I, House J I, Jain A K, Jones S D, Kato E, Keeling R F, Klein Goldewijk K, Körtzinger A, Koven C, Lefèvre N, Omar A, Ono T, Park G H, Pfeil B, Poulter B, Raupach M R, Regnier P, Rödenbeck C, Saito S, Schwinger J, Segschneider J, Stocker B D, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S, Yue C. Global carbon budget 2013. Earth System Science Data Discussions, 2013, 6(2): 689-760.
[2] Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S L, Rautianen A, Sitch S, Hayes D. A large and persistent carbon sink in the world's forests. Science, 2011, 333(6045): 988-993.
[3] Fang J Y, Guo Z D, Hu H F, Kato T, Muraoka H, Son Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 2014, 20(6): 2019-2030.
[4] Makumba W, Akinnifesi F K, Janssen B, Oenema O. Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystems and Environment, 2007, 118(1/4): 237-243.
[5] Syampungani S, Chirwa P W, Akinnifesi F K, Ajayi O C. The potential of using agroforestry as a win-win solution to climate change mitigation and adaptation and meeting food security challenges in southern Africa. Agricultural Journal, 2010, 5(2): 80-88.
[6] Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010. Rome: FAO, 2010.
[7] Intergovernmental Panel on Climate Change. IPCC Special Report: Land Use, Land-Use Change, and Forestry. Cambridge: Cambridge University Press, 2000.
[8] Kutch W L, Bahn M, Heinemeyer A. Soil Carbon Dynamics: An Integrated Methodology. Cambridge: Cambridge University Press, 2010: 49-75.
[9] Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882): 1444-1449.
[10] Lal R. Carbon sequestration. Philosophical Transactions ofthe Royal Society B, Biological Sciences, 2008, 363(1492): 815-830.
[11] Sarmiento J L, Gloor M, Gruber N, Beaulieu C, Jacobson A R, Mikaloff Fletcher S E, Pacala S, Rodgers K. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 2010, 7(8): 2351-2367.
[12] Humpenöder F, Popp A, Dietrich J P, Klein D, Lotze-Campen H, Bonsch M, Bodirsky B L, Weindl I, Stevanovic M, Müller C. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 2014, 9(6): 064029.
[13] Hudiburg T W, Luyssaert S, Thornton P E, Law B E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environmental Science & Technology, 2013, 47(22): 13132-13140.
[14] Hicke J A, Allen C D, Desai A R, Dietze M C, Hall R J, Hogg E H, Kashian D M, Moore D, Raffa K F, Sturrock R N, Vogelmann J. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 2012, 18(1): 7-34.
[15] U. S. Climate Change Science Program and the Subcommittee on Global Change Research. The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. Asheville: CCSP, 2007.
[16] Niu X Z, Duiker S W. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U. S. Forest Ecology and Management, 2006, 223(1/3): 415-427.
[17] Patra P K, Canadell J G, Houghton R A, Piao S L, Oh N H, Ciais P, Manjunath K R, Chhabra A, Wang T, Bhattacharya T, Bousquet P, Hartman J, Ito A, Mayorga E, Niwa Y, Raymond P A, Sarma V V S S, Lasco R. The carbon budget of South Asia. Biogeosciences, 2013, 10(1): 513-527.
[18] Dib A E, Johnson C E, Driscoll C T, Fahey T J, Hayhoe K. Simulating effects of changing climate and CO2 emissions on soil carbon pools at the Hubbard Brook experimental forest. Global Change Biology, 2014, 20(5): 1643-1656.
[19] Talhelm A F, Pregitzer K S, Kubiske M E, Zak D R, Campany C E, Burton A J, Dickson R E, Hendrey G R, Isebrands J G, Lewin K F, Nagy J, Karnosky D F. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Global Change Biology, 2014, 20(8): 2492-2504.
[20] Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system-Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 2014, 11(5): 1345-1360.
[21] Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Rock J. Carbon sequestration and forest management. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2007, 2(017):1-16.
[22] Congressional Research Service. Carbon Sequestration in Forests. US: CRS, 2009.
[23] Mason C, Plantinga A. Contracting for Impure Public Goods: Carbon Offsets and Additionality. Cambridge: National Bureau of Economic Research Working Paper Series, 2011: 21-23.
[24] King A W, Hayes D J, Huntzinger D N, West T O, Post W M. North American carbon dioxide sources and sinks: magnitude, attribution, and uncertainty. Frontiers in Ecology and the Environment, 2012, 10(10): 512-519.
[25] Nilsson S, Schopfhauser W. The carbon-sequestration potential of a global afforestation program. Climate Change, 1995, 30(3): 267-293.
[26] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus Series B-Chemical and Physical Meteorology, 2003, 55(2): 378-390.
[27] Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science, 1994, 263(5144): 185-190.
[28] Benítez P C, McCallum I, Obersteiner M, Yamagata Y. Global potential for carbon sequestration: Geographical distribution, country risk and policy implications. Ecological Economics, 2007, 60(3): 572-583.
[29] Paul K I, Polglase P J, Nyakuengama J G, Khanna P K. Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168(1/3): 241-257.
[30] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6(3): 317-327.
[31] Metz B, Davidson O R, Bosch P R, Dave R, Meyer L A. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[32] Thomson A M, César Izaurralde R, Smith S J, Clarke L E. Integrated estimates of global terrestrial carbon sequestration. Global Environmental Change, 2008, 18(1): 192-203.
[33] Houghton R A, Skole D L, Nobre C A, Hackler J L, Lawrence K T, Chomentowski W H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 2000, 403(6767): 301-304.
[34] Tan Z X, Lal R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agriculture, Ecosystems and Environment, 2005, 111(1/4): 140-152.
[35] Zaehle S, Bondeau A, Carter T R, Cramer W, Erhard M, Prentice I C, Reginster I, Rounsevell M D A, Sitch S, Smith B, Smith P C, Sykes M. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100. Ecosystems, 2007, 10(3): 380-401.
[36] Department for the Environment, Food and Rural Affairs. Inventory and Projections of UK Emissions by Sources and Removals by Sinks Due to Land Use, Land Use Change and Forestry. London: DEFRA, 2009.
[37] Nijnik M. Carbon capture and storage in forests//Hester R E, Harrison R M eds. Carbon Capture: Sequestration and Storage. Cambridge: Royal Society of Chemistry, 2009: 203-239.
[38] Natural England. Carbon Storage by Habitat: Review of the Evidence of the Impacts of Management Decisions and Condition of Carbon Stores and Sources. Worcester: NE, 2012.
[39] Tremblay S, Périé C, Ouimet R. Changes in organic carbon storage in a 50 year white spruce plantation chronosequence established on fallow land in Quebec. Canadian Journal of Forest Research, 2006, 36(11): 2713-2723.
[40] de Jong B, Anaya C, Masera O, Olguín M, Paz F, Etchevers J, Martínez R D, Guerrero G, Balbontín C. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecology and Management, 2010, 260(10): 1689-1701.
[41] Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the U. S. forest sector from 1990 to 2010. Forest Ecology and Management, 2007, 241(1/3): 14-27.
[42] Woodbury P B, Heath L S, Smith J E. Effects of land use change on soil carbon cycling in the conterminous United States from 1900 to 2050. Global Biogeochemical Cycles, 2007, 21(3): GB3006.
[43] Arai H, Tokuchi N. Factors contributing to greater soil organic carbon accumulation after afforestation in a Japanese coniferous plantation as determined by stable and radioactive isotopes. Geoderma, 2010, 157(3/4): 243-251.
[44] Xu B, Guo Z D, Piao S L, Fang J Y. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Science China Life Sciences, 2010, 53(7): 776-783.
[45] Huang L, Liu J Y, Shao Q Q, Xu X L. Carbon sequestration by forestation across China: Past, present, and future. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291-1299.
[46] Shi J, Cui L L. Soil carbon change and its affecting factors following afforestation in China. Landscape and Urban Planning, 2010, 98(2): 75-85.
[47] Heil G W, Muys B, Hansen K. Environmental Effects of Afforestation in North-Western Europe//Plant and Vegetation. The Netherlands: Springer, 2007: 19-52.
[48] Paul E A, Morris S J, Six J, Paustian K, Gregorich E G. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Science Society of America Journal, 2003, 67(5): 1620-1628.
[49] Byrne K A, Black K. Carbon Sequestration in Irish Forest. 2008, [2014-10-22]. http://wwwcofordie/publications/projectreports/climatechangeandforests/carbonsequestrationinforests/.
[50] US Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2012. Washington D C: US EPA, 2014.
[51] Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Cambridge: Cambridge University Press, 2003.
[52] The Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: IPCC, 2006.
[53] Stinson G, Kurz W A, Smyth C E, Neilson E T, Dymond C C, Metsaranta J M, Boisvenue C, Rampley G J, Li Q, White T M, Blain D. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 2011, 17(6): 2227-2244.
[54] Eriksson E, Gillespie A R, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J. Integrated carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Research, 2007, 37(3): 671-681.
[55] Malmsheimer R W, Heffernan P, Brink S, Crandall D, Deneke F, Galik C, Gee E, Helms J A, McClure N, Mortimer N, Ruddell S, Smith M, Stewart J. Preventing GHG emissions through wood substitution. Journal of Forestry, 2008, 106(3): 132-135.
[56] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management, 2010, 259(8): 1363-1375.
[57] Albani M, Medvigy D, Hurtt G C, Moorcroft P R. The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12(12): 2370-2390.
[58] Nave L E, Vance E D, Swanston C W, Curtis P S. Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 2010, 259(5): 857-866.
[59] Bala G, Caldeira K, Wickett M, Phillips T J, Lobell D B, Delire C, Mirin A. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(16): 6550-6555.
[60] van Groenigen K J, Qi X, Osenberg C W, Luo Y Q, Hungate B A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science, 2014, 344(6183): 508-509.
[61] Kowalchuk G A. Bad news for soil carbon sequestration? Science, 2012, 337(6098): 1049-1050.
[62] Bellassen V, Viovy N, Luyssaert S,Le Maire G, Schelhaas M-J, Ciais P. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Global Change Biology, 2011, 17(11): 3274-3292.
[63] Qiao N, Schaefer D, Blagodatskaya E, Zou X M, Xu X L, Kuzyakov Y. Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 2014, 20(6): 1943-1954.
[64] Ueyama M, Iwata H, Harazono Y. Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biology, 2014, 20(4): 1161-1173.
[65] Heath J, Ayres E, Possell M, Bardgett R D, Black H I J, Grant H, Ineson P, Kerstiens G. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science, 2005, 309(5741): 1711-1713.
[66] van der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, van Leeuwen T T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 2010, 10(23): 11707-11735.
[67] Chaiyo U, Garivait S, Wanthongchai K. Carbon storage in above-ground biomass of tropical deciduous forest in Ratchaburi province, Thailand. World Academy of Science, Engineering and Technology,International Science index 58, 2011, 5(10): 495-500.
[68] 庄亚辉, 曹美秋, 王效科, 冯宗炜. 中国地区生物质燃烧释放的含碳痕量气体. 环境科学学报, 1998, 18(4): 337-343.
[69] 王效科, 冯宗炜, 庄亚辉. 中国森林火灾释放的CO2、CO和CH4研究. 林业科学, 2001, 37(1): 90-95.
[70] Lü A F, Tian H Q, Liu M L, Liu J Y, Melillo J M. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. Journal of Geophysical Research: Atmospheres, 2006, 111(D5): D05313.
[71] Hayes D J, McGuire A D, Kicklighter D W, Gurney K R, Burnside T J, Melillo J M. Is the northern high-latitude land-based CO2 sink weakening? Global Biogeochemical Cycles, 2011, 25(3): GB3018.
[72] Poirier V, Paré D, Boiffin J, Munson A D. Combined influence of fire and salvage logging on carbon and nitrogen storage in boreal forest soil profiles. Forest Ecology and Management, 2014, 326: 133-141.
[73] Amiro B D, Barr A G, Barr J G, Black T A, Bracho R, Brown M, Chen J, Clark K L, Davis K J, Desai A R, Dore S, Engel V, Fuentes J D, Goldstein A H, Goulden M L, Kolb T E, Lavigne M B, Law B E, Margolis H A, Martin T, McCaughey J H, Misson L, Montes-Helu M, Noormets A, Randerson J T, Starr G, Xiao J. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences, 2010, 115(G4): G00K2.
[74] Berenguer E, Ferreira J, Gardner T A, Arago L E O C, De Camargo P B, Cerri C E, Durigan M, Junior R C D O, Guimaraes I G, Barlow J. A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 2014, 20(12): 3713-3726.
[75] Westerling A L, Bryant B P, Preisler H K, Holmes T P, Hidalgo H G, Das T, Shrestha S R. Climate change and growth scenarios for California wildfire. Climatic Change, 2011, 109(S1): 445-463.
[76] Wotton B M, Nock C A, Flannigan M D. Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire, 2010, 19(3): 253-271.
[77] Kloster S, Mahowald N M, Randerson J T, Lawrence P J. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 2012, 9(1): 509-525.
[78] Liu Z H, Yang J A, Chang Y, Weisberg P J, He H S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 2012, 18(6): 2041-2056.
[79] Dymond C C, Neilson E T, Stinson G, Porter K, MacLean D A, Gray D R, Campagna M, Kurz W A. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 2010, 13(6): 917-931.
[80] Brown M, Black T A, Nesic Z, Foord V N, Spittlehouse D L, Fredeen A L, Grant N J, Burton P J, Trofymow J A. Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agricultural and Forest Meteorology, 2010, 150(2): 254-264.
[81] Metsaranta J M, Kurz W A, Neilson E T, Stinson G. Implications of future disturbance regimes on the carbon balance of Canada's managed forest (2010-2100). Tellus Series B-Chemical and Physical Meteorology, 2010, 62(5): 719-728.
[82] Edburg S L, Hicke J A, Lawrence D M, Thornton P E. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G04033.
[83] Albani M, Moorcroft P R, Ellison A M, Orwig D A, Foster D R. Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Canadian Journal of Forest Research, 2010, 40(1): 119-133.
[84] Medvigy D, Clark K L, Skowronski N S, Schfer K V R. Simulated impacts of insect defoliation on forest carbon dynamics. Environmental Research Letters, 2012, 7(4): 045703.
[85] Li X D, Yi M J, Son Y, Jin G Z, Han S S. Forest biomass carbon accumulation in Korea from 1954 to 2007. Scandinavian Journal of Forest Research, 2010, 25(6): 554-563.