生态学报  2016, Vol. 36 Issue (7): 2084-2090

文章信息

刘秀位, 张小雨, 张喜英
LIU Xiuwei, ZHANG Xiaoyu, ZHANG Xiying
大气气溶胶增加对作物的影响研究进展
A review of the research on crop responses to the increase in aerial aerosol
生态学报, 2016, 36(7): 2084-2090
Acta Ecologica Sinica, 2016, 36(7): 2084-2090
http://dx.doi.org/10.5846/stxb201409031751

文章历史

收稿日期: 2014-09-03
网络出版日期: 2015-08-05
大气气溶胶增加对作物的影响研究进展
刘秀位, 张小雨, 张喜英     
中国科学院农业水资源和河北省节水农业重点实验室, 遗传与发育生物学研究所农业资源研究中心, 石家庄 050021
摘要: 大气气溶胶是指悬浮在大气中的固态和液态颗粒物总称。近年来空气污染带来了一些区域大气气溶胶浓度上升明显,一定程度上对作物生长环境带来影响。国内外关于大气气溶胶增加可能对作物产生的影响表现在:(1)大气气溶胶增加会导致直接辐射减少,而散射辐射可能会有一定程度增加;散射辐射增加有利于一些作物整个冠层光合能力的提高。(2)大气气溶胶带来辐射的改变也会影响近地面小气候环境,尤其是大气昼夜温度变化,从而影响作物干物质积累;而辐射与温度的改变同时也会影响农田蒸散和最终水分利用效率。(3)大气气溶胶形成的干沉降会停留在叶片表面,减少光合有效辐射到达叶片的量,同时对作物叶片结构和功能产生直接影响。在总结国内外研究进展基础上,提出未来关于大气气溶胶增加对作物影响需要进一步明确大气气溶胶带来的作物生长环境改变对作物碳同化、积累和消耗的影响以及直接和散射辐射比例改变如何影响作物光合和蒸腾的相互关系,通过全面系统的研究大气气溶胶对作物产量形成的影响机制,提出有针对性的田间应对技术。
关键词: 大气气溶胶    辐射    作物    响应    
A review of the research on crop responses to the increase in aerial aerosol
LIU Xiuwei, ZHANG Xiaoyu, ZHANG Xiying     
Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
Abstract: Aerial aerosol is defined as a colloid of fine solid particles or liquid droplets in the atmosphere. With the improvements in economic and social development, aerosol emissions are rapidly increasing in some Chinese regions. Consequently, haze and fog frequently occur and there are widespread concerns about the possible harmful effects of the haze on human beings. Its possible effects on agricultural production have also been studied and some results, based on related studies carried out globally, have shown that (1) Anthropogenic fossil fuel and biomass combustion have released aerosols into the atmosphere that have affected the quantity and optical properties of aerosols (known as aerosol optical depth). Changes in aerosol optical depth modify the solar radiation reaching the ground, which directly affects the carbon balance of terrestrial ecosystems. The change in crop yield due to the influence of aerosols was found to be extremely dependent on the magnitude of the reduction in direct radiation and the increase in the diffuse fraction. These particles can directly scatter and/or absorb surface solar radiation in different ways because of differences in the composition and density of air pollutants. The accepted view is that the increase in the aerosol optical depth will reduce direct radiation, and that diffuse radiation will increase to some extent. Furthermore, the increased diffuse radiation should benefit crop canopy photosynthesis and have a larger effect on gross primary production than the latent radiation. (2) The change in radiation also affects air temperature near the surface. The daytime temperature will decrease, but the nighttime temperature might increase, which may lead to a reduced diurnal temperature difference. As a result, crop production and crop water use might fall. (3) The direct effects of aerosol on crops have also been measured, along with the indirect effects of air pollution on crop growth and yield production. The deposition of dry particles on the leaf surface may block the radiation reaching the leaf surface and negatively affect leaf structure and function, which could reduce the photosynthetic capacity of crops. The above-mentioned results showed that there were possible positive and negative effects of air pollution on crop growth. However, the overall effects of the aerosol on crop production are still not clear in regions with serious air pollution problems. Therefore, it is necessary to further quantify the influence of aerosols on radiation partitioning, and their interactions with carbon processes, crop-water relations, crop leaf properties, and photosynthetic functions, to determine the magnitude of the air pollution effects on crop performance and provide possible counter-measures to mitigate the negative effects of air pollution on crop growth.
Key words: air aerosol    radiation    crop    response    

太阳辐射是地球表面能量交换的主要来源,它为植物光合作用提供能量,是影响陆地生态系统生产力、碳收支和水循环的重要因子。很多研究显示地球表面接收到的辐射正在逐渐减少,即全球变暗现象,这种现象与大气污染气体尤其是气溶胶浓度增加有关[1, 2]。大气气溶胶是悬浮在大气中的固态和液态颗粒物的总称,不仅在全球气候变化中起着重要作用,也是区域大气灰霾污染的主要构成。据估计到2100年全球二次有机气溶胶颗粒含量将增加36%[3],中国大气中气溶胶光学厚度增加幅度将更大[4]。近两年北方地区已出现了严重的雾霾[5],例如位于华北的石家庄2013年重度污染天数占39.8%,达标天数只占11.5%。大气气溶胶增加对人类健康和环境带来的危害已引起社会重视,而其对农业生产产生的直接影响也亟待研究。张喜英等研究发现,最近10年天气因素驱动的华北典型地点冬小麦产量比20世纪80年代低8%—10%,其中昼夜温差变小和日照时数降低是天气因素驱动的产量潜力降低的主要原因[6],而大气气溶胶浓度上升对这两个气象因素将产生不利影响。Roderick 和Farquhar认为在气溶胶增加幅度较大的中国,气溶胶对作物产量形成过程的影响应该特别关注[7]。本文着重综述前人在作物生理生态响应方面的成果。

1 作物产量的响应机制

大气气溶胶对作物的影响主要有两个方面:通过影响辐射而间接影响作物生长和大气气溶胶沉降到叶片后直接影响作物结构和生理过程。

1.1 直接辐射和散射辐射变化对作物产量影响

大气对太阳辐射的吸收具有选择性,因而使到达地面的太阳辐射光谱变得极不规则。太阳辐射中对植物光合作用有效的光谱成分称为光合有效辐射(PAR)。PAR占太阳直接辐射的比例随太阳高度角的增加而增加,最高可达45%。而在散射辐射中,光合有效辐射的比例可达60%—70%之多,散射辐射增加可增加PAR在辐射中的比例,从而对作物光合作用有利。大气气溶胶可直接反射或者吸收太阳辐射,也会散射太阳辐射,气溶胶的存在在减少到达地面直接辐射的同时,也增加了散射辐射[8]。气溶胶光学厚度(aerosol optical depth,AOD)增加对太阳辐射中不同波段比如绿光、蓝光和红光光谱影响不同,当AOD从0.05增加到0.5时,散射的蓝光会增加83%;若AOD继续增加,绿光将会增加[9]。植物光合作用主要利用的是蓝光(0.4—0.5 mm),因此,当AOD增加到一定程度时,其散射辐射的增加可能更有利于植物光合作用,增加二氧化碳吸收固定。因此,越来越多的研究认为散射辐射增加有利于陆地生态系统碳净积累[10, 11]。但当大气气溶胶浓度达到一定程度后散射辐射的增加不能弥补直接辐射减少带来的对作物影响时,将显著降低陆地生态系统的碳积累[12, 13, 14]

植物对散射辐射增加的响应也取决于植物种类、冠层结构、叶面积指数以及生长环境[8]。Steiner和Chameides 发现在晴天里作物叶片容易受到光抑制,高浓度气溶胶遮阴作用能够降低叶片温度,减轻光抑制,从而使得光合与蒸腾都提高[15]。但是也有一些研究认为散射辐射对光合能力的提高不足于弥补气溶胶或者云的遮阴作用带来的不利作用[16],这些结果表明对植物生长来说应该存在一个合适的散射辐射范围[17]。一般认为叶面指数高的植物对散射辐射反应更为敏感,因为冠层越大,其截获的辐射就越多;而冠层以下接收到的辐射很少,因此散射辐射的增加使得更多的光合有效辐射被遮阴的叶片所吸收利用,从而增加了整个冠层的光合能力[18]。比如Alton等[19]研究发现在散射辐射下叶面积指数为2的针叶林光能利用率增加了6%,而叶面积指数为5.5的热带森林的光能利用率提高了33%。为分析散射与直射辐射对植物冠层光能利用率的影响,Gu等[20]改进了冠层光合模型,认为冠层光响应曲线接近线性,而散射辐射不仅能够促进植被冠层的光能利用率,还能减缓植被冠层的光合达到饱和。这主要是因为散射光均匀性高于直射光,散射光能够均匀的分配到冠层叶片上[21]

不同植物对光照强度反应存在差异,一般C4作物光饱和点较高[22],散射辐射增加可能不能弥补直接辐射减少带来的对作物生长的不利影响;而C3作物的叶片在高光强或者高辐射下光合作用很容易达到饱和状态,散射辐射对C3植物促进作用潜力可能会较大,但长期低辐射也会降低C3作物如冬小麦的叶片光合效率和产量[23]。相对较弱的光照条件有利于植物营养器官的生长,而强光照有利于作物果实和籽粒的生长,产品中的蛋白质、含糖量等都比较高,直接辐射的减少可能对农作物产品品质带来不利影响。因此大气气溶胶增加带来的直接辐射和散射辐射变化对作物的影响与作物类型、作物生长时期、大气气溶胶浓度有关,并可能对产品品质带来影响。

1.2 昼夜温度变化对作物产量影响

大气温室气体增加使全球面临温度升高带来的气候变化影响,而大气气溶胶浓度增加可增加太阳光的反射,具有降低白天大气温度的效应。很多学者提到的地球工程(Geo-engineering,也被称为人工气候改造)探讨释放大量粒子至大气层,为地球制造一层保护膜来降低地球温度,很多研究用不同的地球系统模型模拟气候工程实施可能对全球温度、降水和农业生产的影响,得到在二氧化碳倍增情况下降低辐射可降低白天高温胁迫对作物的影响,从而对一些作物产生有利作用[24, 25, 26]。大气气溶胶虽然在白天对短波辐射的遮蔽作用大于长波辐射,但在夜间热量收支微弱情况下,气溶胶对长波辐射的遮蔽效应就显示出来,气溶胶的存在对大气低层起保温作用,使近地层昼夜温差变小[27]

气温日较差是重要的气候生态因子之一,对农业生产具有十分重要意义。近年来,很多研究利用模型模拟方法对昼夜温差变化对作物产量可能的影响进行模拟,不同作物和不同地点模拟结果不尽相同[28, 29, 30, 31]。主要原因是由于光合作用和呼吸作用对温度的敏感性不同,昼夜温度变化会改变两个过程之间的平衡,从而对不同作物产生不同影响。Zhang 等[6]利用华北30a定点冬小麦产量结果进行模拟分析,发现天气因素影响的冬小麦产量最近10年比20世纪80年代低9.2%,其中日照时数和昼夜温差降低是天气因素驱动的冬小麦产量降低的主要原因,Xiao等[32]也得出相似结果。在华北夏玉米生长期间,在过去的40年间平均最低温度比平均最高温度增加的幅度高0.86 ℃,在这种升温趋势下,模型模拟结果也显示温度条件驱动的华北平原玉米产量将呈下降趋势[33, 34, 35]。因此,大气气溶胶增加导致昼夜温差变小对华北冬小麦和夏玉米生产可能带来负面影响。

1.3 对农田蒸散和水分利用效率影响

作物叶片光合作用与蒸腾作用是两个同时进行的气体交换过程,气孔作为气体交换的门户,其行为调节和控制着光合与蒸腾,光合与蒸腾两者一起决定着叶片水平上的水分利用效率[36]。很多研究显示光合速率和蒸腾速率之间是非线性关系,当光合有效辐射在一定界限值以下时,光合速率和蒸腾速率均随着光合有效辐射的增加而增加;当光合有效辐射超过一定值时,蒸腾速率依然线性增加,而光合速率反而下降。因此,大气气溶胶在一定浓度范围内可能通过减少直接辐射量降低叶片的蒸腾速率,而不影响叶片的光合速率,从而提高了水分利用效率。Moffat等[11]用模型模拟发现散射辐射对作物生产力的影响大于对潜热通量的影响,使生态系统水平上的水分利用效率得到了提高。

直接辐射降低也可以减少土壤蒸发,从而降低农田蒸散,利于农田水分利用效率的提高。特别是在缺水条件下,农田蒸散量的减少可弥补光合速率降低带来的对作物不利影响,最终对作物产量是正效应[18]。但在充分供水条件下,当大气气溶胶浓度达到一定程度,直接辐射降低对光合作用的影响不能被散射辐射的增加所弥补,叶片光合速率将随着辐射降低而降低。在这种情况下,大气气溶胶存在虽然可降低农田耗水,但对作物生长将产生不利影响。另外,叶片水平水分利用效率的提高并不意味着最终农田水分利用效率的提高,提高单位耗水生产的经济产量是农业高效用水的目标,很多研究显示产量水平的水分利用效率和叶片水平的水分利用效率以及生物量水平的水分利用效率之间没有必然联系[37, 38],因为产量水平的水分利用效率除了和作物整个生育期积累的生物量有关外,还与干物质在各个器官的分配关系密切[39, 40]。因此,大气气溶胶浓度变化对直接辐射和散射辐射的影响将影响叶片蒸腾和光合速率的相关关系,也影响作物的营养和生殖生长过程,从而对作物叶片和最终产量水平的水分利用效率产生影响。

1.4 大气干沉降对作物叶片功能的直接影响

干沉降指的是大气气溶胶直接沉降到地表。Bergin等[41]研究认为,大气污染物中非水溶性颗粒停留在叶片表面,会阻挡光合有效辐射到达叶片的量,从而降低叶片光合速率。大气中的有机污染物可能直接进入植物体而对人类健康产生危害[42]。研究发现中国长江区域2个月时间内叶片上积聚的非水溶性颗粒可减少叶片获得的35%的光合有效辐射量[41]。很多研究发现灰尘覆盖处理后多种C3和C4植物的净光合速率、气孔导度和瞬时光合效率均有明显的下降[43, 44, 45]。由于对红外辐射较高的吸收率,灰尘处理的植株叶片光合部位温度高于对照2—3 ℃,灰尘覆盖处理的植株叶片对于光合有效辐射的反射率明显高于对照,严重灰尘处理通过抑制光合作用而抑制植物生长,植物叶面积明显下降[46, 47]

Burkhardt等[48]一直关注气溶胶与叶片的相互作用,2010年提出“hydraulic activation of stomata”(HAS)概念。认为叶片表面腊层的疏水性能够保证外部的液滴不进入叶片内部,但是叶片表面的气溶胶盐分通过吸收叶片蒸腾水分,形成一层极薄水分子层与质外体溶液连为一体,使叶片保水性下降,在反复干燥与吸湿过程中出现“毛细管作用”而加速蒸腾,降低植物抗旱性。Burkhardt等[49]也发现沉降物中的盐分使叶片表面蜡质层退化,使树木耐旱性降低。Rai等[50]的研究发现大气污染物对很多作物的叶片结构和功能产生了影响,他们把10种植物的叶片连续60 d进行尘埃处理,发现叶片生长速率、叶片表皮细胞和气孔大小都受到影响,叶片表皮也受到破坏,从而对整个植物生长产生负作用。灰尘提高了细胞膜透性和叶片温度,降低叶片的PAR吸收并且阻塞毛孔,以上现象导致氧化胁迫的出现,从而降低了叶片过氧化氢酶(CAT)和超氧化物歧化酶(SOD)的活性[46, 51]。因此,大气气溶胶在叶片形成的干沉降对作物的直接影响也需要关注。

2 研究展望

综上所述,大气气溶胶对作物影响与大气气溶胶浓度与构成、作物类型、作物生长环境等密切相关。大气气溶胶增加对作物有利有弊,然而以前的研究较多的关注其中的一个方面,模型模拟研究较多,直接田间试验较少,难以明白气溶胶对作物影响的机制。特别是针对国内雾霾严重且粮食主产区例如华北地区冬小麦和玉米的田间系统研究报道较少。虽然近10年来全国粮食实现了10连增,但是将来粮食能否继续增产,增产的可能性与雾霾的严重性是矛盾的还是统一的?这些问题值得深入探讨。面对近年来空气气溶胶浓度增加、污染加重、持续时间长的现状,亟需全面系统地研究作物对大气气溶胶浓度增加的响应机制及其对作物产量形成过程的影响。

(1) 气溶胶吸收和反射带来的辐射光谱构成和光照强度改变如何影响作物叶片光合、蒸腾速率以及呼吸速率? 气溶胶对不同波段光谱的反射和散射程度不一致,可能会影响到作物光合需要的能量,影响作物有机物质的合成;同时能量改变带来叶片或者冠层温度的改变也会影响作物蒸腾速率。三者之间的相互关系影响最终的有机质的积累和水分的利用效率。大气气溶胶在夜间使近地层温度升高和降低白天温度引起的昼夜温差缩小对干物质积累、分配和呼吸消耗可能也会产生影响。所以需要系统研究大气气溶胶对作物叶片的生理响应以及干物质积累过程。

(2)尘埃颗粒物在作物叶片上的干沉降对叶片结构和功能产生了怎样的影响?除了气溶胶的间接作用外,气溶胶沉降到叶片后引起叶片结构和生理的反应也需要研究。比如气溶胶不同成分对作物叶片的影响可能不同,其直接沉降到叶片后可能导致叶片气孔堵塞,也可能出现“毛细管作用”而利于蒸腾作用。除了气孔行为外,叶片内部的结构以及生理过程如何变化都需要详细的研究。

(3)整体评价大气气溶胶增加的散射辐射能否弥补直接辐射减少对作物产量影响,气溶胶的直接作用和间接作用的最终结果是产量增加还是减少都值得深入探讨。不同地区粮食作物对气溶胶增加的响应机制有可能不同,所以需要评价不同地区气溶胶对作物产量的影响。尤其是全国粮食主产区,比如华北地区严重缺水,大气气溶胶带来的农田能量平衡改变如何影响作物蒸腾与耗水过程、农田水分平衡和作物水分利用效率值得关注。

(4)田间试验与模型模拟的结合研究。提高作物产量就是缩小实际产量与潜力产量间的差距,那么在雾霾条件下作物产量潜力是否受到气溶胶的影响?目前模型估算的产量潜力没有考虑气溶胶带来的辐射变化,尤其是散射辐射增加带来有利作用,所以结果可能导致模型估算的产量潜力偏低。反过来,在不受气溶胶影响下作物产量潜力是否会增加?所以需要开展相应的田间试验研究,并结合模型进一步分析作物增产的可能性。

参考文献
[1] Norris J R, Wild M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar "dimming, " and solar "brightening". Journal of Geophysical Research: Atmospheres, 2009, 114(D10), doi: 10.1029/2008JD011378.
[2] Wang Y W, Yang Y H, Zhao N, Liu C, Wang Q X. The magnitude of the effect of air pollution on sunshine hours inChina. Journal of Geophysical Research: Atmospheres, 2012, 117(D21), doi: 10.1029/2011JD016753.
[3] Heald C L, Henze D K, Horowitz L W, Feddema J, Lamarque J F, Guenther A, Hess P G, Vitt F, Seinfeld J H, Goldstein A H, Fung I. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research: Atmospheres,2008, 113(D5), doi: 10.1029/2007JD009092.
[4] Streets D G, Yu C, Wu Y, Chin M, Zhao Z C, Hayasaka T, Shi G Y. Aerosol trends overChina, 1980-2000. Atmospheric Research, 2008, 88(2): 174-182.
[5] Mu M, Zhang R H. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology. ScienceChina Earth Sciences, 2014, 57(1): 1-2.
[6] Zhang X Y, Wang S F, Sun H Y, Chen S Y, Shao L W, Liu X W. Contribution of cultivar, fertilizer and weather toyield variation of winter wheat over three decades: A case study in the North China Plain. European Journal of Agronomy, 2013, 50: 52-59.
[7] Roderick M L, Farquhar G D. Geoengineering: Hazy, cool and well fed?. Nature Climate Change, 2012, 2(2): 76-77.
[8] Kanniah K D, Beringer J, North P, Hutley L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Progress in Physical Geography, 2012, 36(2): 209-237.
[9] Kanniah K D, Beringer J, Tapper N J, Long C N. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia. Theoretical and Applied Climatology, 2010, 100(3/4): 423-438.
[10] Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P M. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 2009, 458(7241): 1014-1017.
[11] Moffat A M, Reichstein M, Cescatti A, Lasslop G, Zaehle S. Diffuse radiation and its effects on ecosystem-level water use efficiency. Geophysical Research Abstracts, 2011, 13: EGU2011-12687.
[12] Kobayashi H, Iwabuchi H. A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape. Remote Sensing of Environment, 2008, 112(1): 173-185.
[13] Oliveira P H F, Artaxo P, Pires C, De Lucca S, Procópio A, Holben B, Schafer J, Cardoso L F, Wofsy S C, Rocha H R. The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus B, 2007, 59(3): 338-349.
[14] Yamasoe M A, von Randow C V, Manzi A O, Schafer J S, Eck T F, Holben B N. Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmospheric Chemistry and Physics, 2006, 6(6): 1645-1656.
[15] Steiner A L, Chameides W.Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus B, 2005, 57(5): 404-411.
[16] Alton P B. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural andForest Meteorology, 2008, 148(10): 1641-1653.
[17] Knohl A, Baldocchi D D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research: Biogeosciences (2005-2012), 2008, 113(G2), doi: 10.1029/2007JG000663.
[18] Greenwald R, Bergin M H, Xu J, Cohan D, Hoogenboom G, Chameides W L. The influence of aerosols on crop production: A study using the CERES crop model. Agricultural Systems, 2006, 89(2/3): 390-413.
[19] Alton P B, North P R, Los S O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 2007, 13(4): 776-787.
[20] Gu L, Baldocchi D, Verma S B, Black T A, Vesala T, Falge E M, Dowty P R. Advantages of diffuse radiation for terrestrial ecosystem productivity.Journal of Geophysical Research: Atmosphere (1984-2012), 2002, 107(D6): ACL 2-1-ACL 2-23.
[21] Brodersen C R, Vogelmann T C, Williams W E, Gorton H L. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal.Plant, Cell & Environment, 2008, 31(1): 159-164.
[22] Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag, 2002.
[23] Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science, 2010, 196(1): 38-47.
[24] Schmidt H, Alterskjær K, Bou Karam D, Boucher O, Jones A, Kristjánsson J E, Niemeier U, Schulz M, Aaheim A, Benduhn F, Lawrence M, Timmreck C. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models. Earth System Dynamics, 2012, 3(1): 63-78.
[25] Pongratz J, Lobell D B, Cao L, Caldeira K.Crop yields in a geoengineered climate. Nature Climate Change, 2012, 2(2): 101-105.
[26] Kravitz B, Caldeira K, Boucher O, Robock A, Rasch P J, Alterskjær K, Karam D B, Cole J N S, Curry C L, Haywood J M, Irvine P J, Ji D Y, Jones A, Kristjásson J E, Lunt D J, Moore J C, Niemeier U, Schmidt H, Schulz M, Singh B, Tilmes S, Watanabe S, Yang S T, Yoon J H. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8320-8332.
[27] Huang Y, Dickinson R E, Chameides W L.Impact of aerosol indirect effect on surface temperature over East Asia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4371-4376.
[28] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Cassman K G, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975.
[29] Lobell D B, Ortiz-Monasterio J I, Asner G P, Matson P A, Naylor R L, FalconW P.Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94(2): 250-256.
[30] Kanno K, Makino A. Increased grain yield and biomass allocation in rice under cool night temperature.Soil Science & Plant Nutrition, 2010, 56(3): 412-417.
[31] Chen C Q, Lei C X, Deng A X, Qian C R, Hoogmoed W, Zhang W J. Will higher minimum temperatures increase corn production inNortheast China? An analysis of historical data over 1965-2008. Agricultural and Forest Meteorology, 2011, 151(12): 1580-1588.
[32] Xiao D P, Tao F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades.European Journal of Agronomy, 2014, 52: 112-122
[33] Tao F L, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000.Agricultural and Forest Meteorology, 2006, 138(1/4): 82-92.
[34] Tao F L, Zhang Z. Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options.European Journal of Agronomy, 2010, 33(2): 103-116.
[35] Liu S X, Mo X G, Lin Z H, Xu Y Q, Ji J J, Wen G, Richey J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural Water Management, 2010, 97(8): 1195-1209.
[36] Rajaona A M, Brueck H, Asch F. Leaf gas exchange characteristics of Jatropha as affected by nitrogen supply, leaf age and atmospheric vapour pressure deficit.Journal of Agronomy and Crop Science, 2013, 199(2): 144-153.
[37] Wang Y Z, Zhang X Y, Liu X W, Zhang X Y, Shao L W, Sun H Y, Chen S Y. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat. Field Crops Research, 2013, 144: 236-244.
[38] Flanagan L B, Farquhar G D. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf-and ecosystem-scales in a northern Great Plains grassland. Plant, Cell & Environment, 2014, 37(2): 425-438.
[39] Gulías J, Seddaiu G, Cifre J, Salis M, Ledda L. Leaf and plant water use efficiency in cocksfoot and tall fescue accessions under differing soil water availability. Crop Science, 2012, 52(5): 2321-2331.
[40] Tomás M, Medrano H, Pou A, Escalona J M, Martorell S, Ribas-CarbÓ M, Flexas J.Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Australian Journal of Grape and Wine Research, 2012, 18(2): 164-172.
[41] Bergin M H, Greenwald R, Xu J, Berta Y, Chameides W L. Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze delta region of China. Geophysical Research Letters, 2001, 28(18): 3605-3608.
[42] 王传飞, 王小萍, 龚平, 姚檀栋. 植被富集持久性有机污染物研究进展. 地理科学进展, 2013, 32(10): 1555-1566.
[43] Sharifi M R, Gibson A C, Rundel P W. Surface dust impacts on gas exchange inMojave Desert shrubs. Journal of Applied Ecology, 1997, 34(4): 837-846.
[44] 翟薇, 赵艳霞, 王春乙, 吴则金. 大气气溶胶变化对农业影响的研究进展. 气象科技, 2006, 34(6): 705-710.
[45] 王宏炜, 曹琼辉, 黄峰, 袁琳. 尘污染对植物的生理和生态特性影响. 广西植物, 2009, 29(5): 621-626.
[46] van Heerden P D R, Krüger G H J, Kilbourn Louw M. Dynamic responses of photosystem Ⅱ in theNamib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust. Environmental Pollution, 2007, 146(1): 34-45.
[47] Kanniah K D, Beringer J, Hutley L B. The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: A review, with special reference to northern Australia. Progress in Physical Geography, 2010, 34(4): 459-490.
[48] Burkhardt J. Hygroscopic particles on leaves: nutrients or desiccants?. Ecological Monographs, 2010, 80(3): 369-399.
[49] Burkhardt J, Pariyar S. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.). Environmental Pollution, 2014, 184: 659-667
[50] Rai A, Kulshreshtha E, Srivastava P K, Mohanty C S.Leaf surface structure alterations due to particulate pollution in some common plants. The Environmentalist, 2010, 30: 18-23.
[51] 刘平, 张强, 杜文波, 白光洁, 李丽君, 丁玉川. 焦化厂煤粉尘的沉降规律及其对玉米抗氧化系统的影响. 中国农学通报, 2011, 27(7): 249-252.