生态学报  2016, Vol. 36 Issue (4): 1095-1103

文章信息

张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎
ZHANG Yi, LÜ Shihua, MA Jing, XU Hua, YUAN Jiang, DONG Yujiao
冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田CH4排放的影响
Effects of water management in winter and of plastic film mulching during rice cultivation on CH4 emission from paddy field in a hilly region of Central Sichuan
生态学报, 2016, 36(4): 1095-1103
Acta Ecologica Sinica, 2016, 36(4): 1095-1103
http://dx.doi.org/10.5846/stxb201405301111

文章历史

收稿日期: 2014-05-30
冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田CH4排放的影响
张怡1, 3, 吕世华2, 马静1, 徐华1 , 袁江2, 董瑜皎2    
1. 土壤与农业可持续发展国家重点实验室, 中国科学院南京土壤研究所, 南京 210008;
2. 四川省农业科学院土壤肥料研究所, 成都 610066;
3. 江苏农药检定所, 南京 210036
摘要: 采用静态箱-气相色谱法观测冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田全年的CH4排放通量。试验设置持续淹水(CF)、冬季直接落干+稻季淹水(TF)与冬季覆膜落干+稻季覆膜(PM)3个处理。结果表明,冬季休闲期,CF、TF和PM处理CH4排放分别为16.1、1.4 g/m2和2.7 g/m2;水稻生长期,CF、TF和PM处理CH4排放分别为57.7、27.7 g/m2和13.5 g/m2。相较于CF处理,TF与PM处理分别减少其全年CH4排放60.6%和78.0%。TF与PM处理水稻生长期CH4排放峰值分别较CF处理低33.0%和56.1%。休闲期,TF、PM处理厢面与厢沟区域CH4排放与土壤温度显著正相关(P <0.05),与土壤氧化还原电位(土壤Eh)显著负相关(P <0.05),而CF处理CH4排放仅与土壤温度显著正相关(P <0.05)。水稻生长期,CF处理CH4排放与土壤温度显著正相关(P <0.05),与土壤Eh显著负相关(P <0.05),TF处理CH4排放仅与土壤Eh显著负相关(P <0.05),PM处理厢沟CH4排放与土壤Eh显著正相关(P <0.05)。各处理水稻生长期土壤可溶性有机碳含量(DOC)与微生物生物量碳含量(MBC)显著高于休闲期(P <0.05)。研究结果为进一步研究冬水田全年CH4排放规律及寻求有效的减排措施提供数据支撑和科学依据。
关键词: 冬水田(常年淹水的稻田)    水分管理    覆膜栽培    CH4排放    
Effects of water management in winter and of plastic film mulching during rice cultivation on CH4 emission from paddy field in a hilly region of Central Sichuan
ZHANG Yi1, 3, LÜ Shihua2, MA Jing1, XU Hua1 , YUAN Jiang2, DONG Yujiao2    
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. Institute of Soil Fertilizer, Sichuan Agriculture Sciences Academy, Chengdu 610066, China;
3. Jiangsu Institute for the Control of Agrochemicals, Nanjing 210036, China
Abstract: Methane (CH4) is one of the most important greenhouse gases and plays an important role in atmospheric chemistry. Rice fields have been identified as an important source of atmospheric CH4. Because permanently flooded paddy fields create the most favorable situation for CH4 production and emit CH4 all year round, they are thought to contribute the greatest amounts of CH4. Draining the permanently flooded paddy fields in the fallow season is supposed to be a good option for mitigating CH4 emission. However, those paddy fields distributed in the hilly area of southwest China face the problem of water shortage. This means that transplanting rice in the following year would be hindered, if the fields were drained in the previous fallow season. In recent years, a new technology involving improved plastic film mulching for rice cultivation has been developed. It is an alternative to permanently flooded rice cultivation technology, which promises to save water, and in addition, would allow drainage in the fallow season without impeding the next rice transplanting session. The effects of water management in winter and of plastic film mulching during rice cultivation on CH4 emission throughout the year were explored using winter paddy fields in the hilly region of Central Sichuan. A field experiment was carried out using the static chamber-gas chromatograph method to monitor CH4 emissions in the paddy fields. Three treatments were designed: Treatment CF (continuous flooding all year round), Treatment TF (drained in winter and flooded during the rice growing season), and Treatment PM (drained and mulched in winter and mulched during the rice growing season). The results showed that methane emission for Treatments CF, TF, and PM was 16.1 g/m2, 1.4 g/m2, and 2.7 g/m2, respectively, during the winter fallow season and 57.7 g/m2, 27.7 g/m2, and 13.5 g/m2, respectively, during the rice-growing season. Compared with Treatment CF, Treatments TF and PM reduced the annual CH4 emission by 60.6% and 78.0%, respectively, and lowered the CH4 flux peak during the rice-growing season by 33.0% and 56.1%, respectively. During the fallow season, in Treatments TF and PM, CH4 emission from ridge and ditch areas was significantly correlated with soil temperature (P <0.05), but negatively with soil redox potential (soil Eh) (P <0.05). However, CH4 emission was positively correlated with soil temperature in Treatment CF (P <0.05). During the rice-growing season, in Treatment CF, CH4 emission was significantly and positively related to soil temperature (P <0.05), and negatively to soil Eh (P <0.05). In Treatment TF, CH4 emission was only negatively related to soil Eh (P <0.05), and in Treatment PM, CH4 emission from the ditches was significantly and positively related to soil Eh (P <0.05). The soil dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) contents were much higher during the rice-growing season than during the fallow season (P <0.05). The findings may provide important data and a scientific basis for further study of the process of CH4 emission from permanently flooded paddy fields throughout a year and to explore effective mitigation options for CH4 emission in more detail.
Key words: winter flooded paddies    winter water management    plastic film mulching cultivation    CH4 emission    

CH4是重要的温室气体,对温室效应的贡献达15%[1]。100a时间尺度上,单位质量CH4的增温潜势是CO2的28倍[2]。大气中CH4浓度已由工业革命前的约715 nL/L增至1803 nL/L[2]。稻田是大气CH4的重要排放源,其年排放量为23 Tg[3]。我国稻田每年向大气排放约6.9 Tg CH4,占全球稻田CH4总排放的6%—22%[4]。正确评估并设法减少稻田CH4排放量对我国温室气体减排有重要意义。

冬水田是我国CH4排放量最大的一类稻田[5],其面积仅占我国稻田总面积的12%,但CH4排放却占我国稻田CH4排放的45%[6]。由于常年淹水,冬水田土壤维持在厌氧状态,其在全年均有相当数量的CH4排放[7]。Cai等[7]研究发现,冬水田非水稻生长期CH4排放总量与水稻生长期相近。江长胜等[8]对川中丘陵地区冬水田观测发现,非水稻生长期CH4排放量占全年排放总量的23%。非水稻生长期持续淹水还大大增加后续稻季CH4排放量。研究表明[9,10],持续淹水较排水落干增加后续水稻生长期CH4排放20%—380%。由此,冬水田拥有较大的CH4减排潜力。非水稻生长季节进行排水落干是冬水田CH4减排的有力的措施[11]。据估算[12],若将冬水田排水落干1次,则中国可减少15.6% 的CH4排放。但在非水稻生长季节对全部的冬水田全部排干是不现实的。有很大一部分冬水田在很大程度上依赖降雨灌溉,如果在非水稻生长期排水落干,万一遇到春季降水不足,就有可能无法耕作和种植水稻。水稻覆膜栽培是以地膜覆盖为核心,以节水抗旱为主要目的的新型栽培方式。它可以显著节约水稻生产用水,其全生育期用水量仅为传统栽培的70%[13]。因此,若采用水稻覆膜栽培,即可在非水稻生长期对冬水田进行排水落干。目前,水稻覆膜栽培技术结合非水稻生长季节水分管理对冬水田全年CH4排放的影响迄今未见报道。

本研究通过田间原位试验,研究非水稻生长期水分管理与水稻覆膜栽培对川中丘陵地区冬水田全年CH4的排放通量的影响,为进一步研究稻田CH4排放规律及寻求有效的减排措施提供数据支撑和科学依据。

1 材料与方法 1.1 试验设计

田间试验于2012—2013年在四川省资阳市雁江区雁江镇响水村(104°34′ E,30°05′ N)进行。该地区平均气温16.8 ℃,平均年降水量965.8 mm。试验土壤为侏罗纪遂宁组母质发育红棕紫泥,土壤全碳含量为34.0 g/kg,全N含量为1.7 g/kg,土壤pH值为8.2。

试验共设3个处理(表1),4次重复,试验小区面积为20 m2(4 m×5 m),随机区组设计。2012年水稻收获后,小区内稻茬全部移除,PM处理厢面薄膜并不立刻揭去,而是在来年翻耕泡田之前(4月20日)揭除。PM处理试验小区设4条厢沟,3条厢面。各厢沟长4 m、宽12.5 cm、深15 cm;各厢面长4 m、宽1.5 m。3处理冬季休闲,稻季供试水稻品种为川香8108,于4月7日育秧,5月10日移栽,9月10日收获。水稻均采用三角稀植,即行窝距为40 cm×40 cm,每窝以三角形方式栽3苗,苗间距12 cm,移栽密度为18 穴/m2。所有处理均施用600 kg/hm2的过磷酸钙、90 kg/hm2的氯化钾和15 kg/hm2的一水合硫酸锌,作为基肥一次性施入。PM处理5月9日基肥施用后在厢面上均匀覆盖0.004 mm薄膜并平铺压实。

表1 试验处理描述 Table 1 Designing of the experiment
栽培方式 Planting method简称 abbreviation冬季管理 Water management in winter 稻季管理 Management during rice-growing season
氮肥管理 N fertilizer management 水分管理 Water management
冬水田平作 Winter flooded paddy fieldsCF持续淹水尿素施用量为150 kg N/hm2,按1 ∶ 1的比例于5月9日和5月30日施用基肥与分蘖肥持续淹水
常规栽培 Traditional cultivationTF排水落干尿素施用量为150 kg N/hm2,按1 ∶ 1的比例于5月9日和5月30日施用基肥与分蘖肥持续淹水
水稻覆膜节水高产栽培 Plastic film mulching cultivationPM排水落干尿素施用量为150 kg N/hm2,5月9日作基肥一次性施入,肥料均匀施于厢面上烤田期(6月28日—7月20日)排尽厢沟水层,其余时间保持厢面无水层,厢沟有水层
1.2 样品采集

CH4样品用静态箱采集。为准确定量PM处理CH4排放,在试验小区内放置2种不同规格的静态箱,分别用于测定厢面与厢沟区域CH4排放,箱A放置于厢面正上方,包括中段箱和顶箱2部分,高分别为60 cm和70 cm,底面积均为40 cm×40 cm,中段箱顶部设有密封用水槽,用于水稻生长后期加层。箱B放置于厢沟上方,高为70 cm,底面积为40 cm×10 cm。CF与TF处理的静态箱规格与PM处理箱A一致。非水稻生长期每隔7d采样1次,水稻生长期每隔4—7 d采样1次,采样时间为8:00—12:00。采样时将静态箱罩在事先埋入田里的不锈钢底座上(40 cm×40 cm×15 cm)。静态箱密封后用两通针将气体导入18 mL预先抽真空的玻璃瓶中,每15 min采样1次,共采样4次。采集气样的同时,采用氧化还原电位仪测定10 cm处土壤Eh、直尺测定水层厚度、温度计测定箱内气温及5 cm处土温(厢沟区域并未观测5cm处土温)。

分别于非水稻生长季(2012年10月26日、2013年1月11日、3月22日)与水稻生长季6月11日(分蘖期)、7月7日(孕穗期)、7月27日(灌浆期)、8月22日(成熟期)按五点采样法采集表层0—10 cm土样(PM处理仅采集厢面区域),土样采集后置于4 ℃冰箱冷冻保存,在1周内完成测定。新鲜土样中的可溶性有机碳(DOC)用0.5 mol/L K2SO4提取,土水比1 ∶ 4,过0.45 μm滤膜,滤液用总有机碳分析仪(TOC仪)测定;采用氯仿熏蒸-K2SO4提取方法测定土样中微生物生物量碳(MBC)。用0.5 mol/L K2SO4分别提取熏蒸前后提取新鲜土样中总有机碳,土水比1 ∶ 4,采用总有机碳分析仪(TOC仪)测定。以熏蒸土壤与不熏蒸土样提取的总有机碳的差值乘以转换系数Kc(2.63),计算土壤MBC。水稻收获时,按试验小区分别收割、脱粒、晾晒、适当筛除秕粒后称量,计算水稻产量。

1.3 样品分析

样品CH4浓度用带FID检测器的气相色谱(岛津GC-12A)测定,柱温80 ℃,检测器温度200 ℃。氮气为载气,流速40 mL/min;氢气为燃气,流速35 mL/min;空气为助燃气,流速350 mL/min。CH4标准气体由中国计量科学研究院提供。

1.4 计算方法

根据CH4浓度与时间关系曲线分别计算CH4排放通量。

CH4排放通量计算公式如下[11]

式中,F为CH4的排放通量(mg m-2 h-1);ρ为标准状态下CH4密度(0.714 kg/m3);V为采样箱内有效体积(m3);A为采样箱所覆盖的土壤面积(m2);dc/dt为单位时间内采样箱内CH4浓度变化(μL L-1 h-1);T为采样箱内温度(K)。

对于PM处理,通过箱B测得的气体排放通量(FB)为厢沟气体排放通量,通过箱A测得的气体排放通量(FA)为厢面气体排放通量,PM处理的气体排放通量为厢面及厢沟的气体排放通量与对应区域面积的加权平均,即:

式中,SASBS分别为试验小区内厢面区域、厢沟区域和小区面积。

CH4排放通量用4个重复的每次观测平均值及标准偏差表示。CH4的季节平均排放通量是将每次观测值按时间间隔加权平均后再取4个重复的平均值。处理间比较以4个重复的平均值进行方差分析及多重比较。

2 结果与分析 2.1 不同管理方式下CH4排放特征

图1显示不同管理方式下休闲期与水稻生长期农田土壤Eh、土壤温度及CH4排放通量的季节变化。休闲期内,CF处理持续淹水,其季节平均土壤Eh为-214 mV;TF处理排水落干,该期季节平均土壤Eh为15 mV;而PM厢面与厢沟区域该期季节平均土壤Eh分别为-3 mV和7 mV。水稻生长期内,CF、TF和PM厢面与厢沟区域季节平均土壤Eh分别为-274 mV、-241 mV、-181 mV和-191 mV。全观测期内,各处理土壤温度变化趋势一致。CF、TF及PM处理厢面区域土壤温度维持在4.6—29.1 ℃之间(图1),休闲期季节平均温度分别为13.0、13.2 ℃和13.4 ℃,水稻生长期季节平均温度分别为25.0、25.0 ℃和26.0 ℃。

图1 稻田土壤Eh、土壤温度及CH4排放通量的季节变化 Fig.1 Temporal variation of soil Eh,soil temperature and CH4 flux CF: 持续淹水continuous flooding; TF: 冬季直接落干+稻季淹水 traditional flooding; PM厢面: 冬季覆膜落干+稻季覆膜厢面ridge area in plastic film mulching; PM厢沟: 冬季覆膜落干+稻季覆膜厢沟ditch area in plastic film mulching

土壤温度与土壤Eh是影响稻田CH4排放的关键因素。休闲期,CF处理土壤Eh在适于CH4产生的范围内变化,其CH4排放随土壤温度变化明显;TF与PM处理厢面及厢沟CH4排放在土壤Eh与土壤温度共同作用下逐渐降低至0.0 mg m-2 h-1。值得注意的是,水稻种植前,气温回升,CF处理CH4排放随土壤温度上升而升高,峰值达11.5 mg m-2 h-1,而此时TF及PM处理厢面及厢沟区域土壤Eh不利于CH4产生(大于-200 mV),所以均未观测到CH4排放。水稻移栽后,CF处理随即出现明显的CH4排放(4.3 mg m-2 h-1),并随着土壤温度升高迅速上升,而TF、PM处理厢面区域在水稻移栽后20d后,才观测到一定数量的CH4排放(0.3—0.5 mg m-2 h-1),且其上升趋势较为缓慢。CF、TF及PM处理厢面区域在水稻孕穗期出现CH4排放峰值,TF及PM处理厢面区域CH4排放峰值较CF处理低33.0%—56.1%。PM厢沟区域只在烤田期水层排尽时才有微弱的CH4排放(0.3—0.9 mg m-2 h-1)。

表2所示,休闲期TF、PM处理厢面与厢沟区域CH4排放与土壤温度显著正相关(P<0.05),与土壤Eh显著负相关,而CF处理CH4排放仅与土壤温度显著正相关(P<0.05),与土壤Eh无显著相关性(P>0.05)。水稻生长期,CF、TF处理CH4排放与土壤Eh显著负相关(P<0.05),而PM处理厢沟CH4排放与土壤Eh显著正相关(P<0.05)。这可能是由于CF与TF处理存在有效的CH4传输途径(水稻植株),其土壤Eh越低,土壤中生成的CH4越多并可有效排入大气;而PM处理厢沟区域有水层阻碍且无有效的CH4传输途径,仅在烤田期水层消失时(土壤Eh上升),其闭蓄态的CH4才得以排放。

表2 土壤Eh和土壤温度与CH4排放通量的相关性分析 Table 2 Relationships of CH4 fluxes with soil Eh and soil temperature
处理 Treatment 休闲期 Fallow season水稻生长期 rice-growing season
土壤Eh Soil Eh土壤温度 Soil temperature土壤Eh Soil temperture土壤温度 Soil temperture
CF0.10.7*-0.5*0.6*
TF-0.7*0.6*-0.5*0.1
PM厢面 Ridge area in PM-0.9*0.6*0.30.3
PM厢沟 Ditch area in PM-0.6*-0.5* -
*表示存在显著性差异(P<0.05); 试验并未观测PM厢沟区域土壤温度, 表示无PM厢沟区域CH4排放与土壤温度的相关性数据; CF: 持续淹水continuous flooding, TF: 冬季直接落干+稻季淹水 traditional flooding, PM厢面: 冬季覆膜落干+稻季覆膜厢面ridge area in plastic film mulching, PM厢沟: 冬季覆膜落干+稻季覆膜厢沟ditch area in plastic film mulching
2.2 冬季水分管理方式及覆膜栽培对冬水田CH4排放的影响

表3显示各处理休闲期与水稻生长期CH4平均排放用量与排放总量。稻田CH4排放主要集中在水稻生长期内,CF、TF及PM处理水稻生长期CH4排放量分别占全观测期内CH4排放量的78.2%、95.2%和83.3%,虽然休闲期CF处理CH4排放仅占全观测期内CH4排放量的21.8%,但其排放量已与PM处理全观测期CH4排放量相当。休闲期排水落干可显著降低稻田CH4排放量,降幅达83.2%—91.3%(P<0.05)。冬季直接落干可减少后续稻季CH4排放52.0%,而覆膜栽培可减少水稻生长期CH4排放77.6% 。全观测期内,冬季直接落干与覆膜栽培分别减少60.6%和78.0%的CH4排放。

表3 各处理CH4平均排放通量、排放总量及水稻产量 Table 3 Average flux and cumulative emission of CH4 and rice yield in different treatments
处理 Treatment 休闲期Fallow season水稻生长期rice-growing season
平均排放通量 Mean flux/ (mg m-2 h-1)排放量 Total emission/(g/m2)平均排放通量 Mean flux/ (mg m-2 h-1)排放量 total emission /(g/m2)产量yields/ (t/hm2)
CF3.1±0.5a16.1±2.8a20.2±3.5a57.7±9.9a8.5±0.5a
TF0.3±0.1b1.4±0.2b9.7±2.5b27.7±7.2b8.5±0.4a
PM厢面Ridge area in PM0.5±0.3b2.7±1.5b6.0±2.0b17.2±5.8b-
PM厢沟Ditch area in PM0.6±0.2b3.0±1.0b0.1±0.1c0.3±0.3c-
PM0.5±0.1b2.7±0.6b4.7±1.6b13.5±4.5b8.3±0.03a
不同小写字母表示同一列存在显著性差异(P<0.05)
2.3 冬季水分管理方式及覆膜栽培对水稻产量的影响

表3显示各处理水稻产量。2013年水稻生长期,CF、TF与PM处理水稻产量分别为8.5、8.5、8.3 t/hm2,三者无显著性差异(P>0.05)。本试验中,PM处理产量略低于CF处理,这是由于考察常年淹水稻田CH4排放的试验需要,保证了CF与TF处理的水分灌溉。在四川地区的实际水稻生产中,有70%的冬水田属于望天田[14](雨育水田,无灌溉工程设施,主要依靠天然降雨种植水稻),其产量受干旱影响较大。吕世华等[13]通过5a田间试验研究证明,在干旱严重的情况下,覆膜栽培可以保证水稻高产稳产。本试验仅进行了1a大田试验,水稻覆膜栽培对水稻产量的影响仍需进一步研究。

2.4 观测期内土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量的变化

表4显示各处理休闲期与水稻生长期土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量。同一处理,由于土壤温度及根际分泌物的影响,其水稻生长期土壤DOC及MBC含量均明显高于休闲期。各处理休闲期DOC含量在59.8—95.5 mg/kg之间,休闲期内无明显变化。水稻生长期内,CF、TF与PM处理DOC含量随水稻生长变化明显,呈现先增加后降低的趋势。全观测期内,CF处理土壤DOC含量均高于PM处理(增幅为10.0%—29.8%)。TF处理在休闲期土壤DOC含量低于PM处理(降幅为4.6%—19.2%),而在水稻生长期较PM处理较高(增幅为6.2%—21.4%)。

表4 观测期内土壤DOC与MBC含量变化 Table 4 Variation of soil DOC and MBC during the observation period
观测时期 DOC/(mg/kg) MBC/(mg/kg)
CFTFPMCFTFPM
休闲期 82.3±9.9 Ac59.8±5.9Bb74.1±4.4 Ab133.8±16.4 Ab201.1±17.0Ab171.9±17.9 Ab
Fallow season89.3±4.7 Ac67.3±9.9Bb70.6±7.9 Bb157.1±13.0 Ab169.0±15.1Ab180.2±21.4 Ab
95.5±9.1 Ac71.2±2.7Bb78.5±3.2 Bb81.9±18.9 Ab72.0±17.1Ac107.7±14.7Ab
水稻生长期 Rice-rowing season分蘖期 Tillering128.1±15.4 Ab124.1±13.9Aa102.2±6.7 Ba234.4±13.0 Aab236.1±18.6Aab286.8±15.9 Aab
拔节期Shooting152.5±14.8 Aa136.0±7.0Aa117.4±2.2 Ba413.0±38.7 Ba422.6±36.4Ba523.9±27.5Aa
孕穗期 Booting 122.1±2.3 Ab117.9±7.6Aa111.0±2.2 Aa395.5±36.4 Aa400.5±37.4Aa458.3±49.4 Aa
成熟期Maturity118.2±13.0 Ab119.5±9.0Aa100.5±15.4 Aa408.9±45.1 Aa407.5±36.1Aa469.3±36.0 Aa
不同小写字母表示同一列存在显著性差异; 不同大写字母表示同一行存在显著性差异; 采样日期分别为2012-10-26、2013-1-11、2013-3-22、2013-6-11、2013-7-7、2013-7-27、2013-8-22

休闲期内,各处理土壤MBC含量在72.0—201.1 mg/kg。水稻生长期内,各处理土壤MBC含量在水稻拔节期达到最高值(413.0—523.9 mg/kg)。全观测期内,PM处理的MBC含量均高于CF及TF处理(增幅为14.4%—28.5%)。在休闲期及水稻生长期内,并未观测到各处理CH4排放与其土壤DOC及MBC含量显著相关性关系(P>0.05)。

3 讨论 3.1 水分管理对休闲期稻田CH4排放的影响

休闲期TF处理及PM处理厢沟与厢面区域CH4排放显著低于CF处理。与持续淹水相比,排水落干及地膜覆盖可抑制CH4产生,增加CH4氧化。CH4是产甲烷菌在严格厌氧环境下作用于产甲烷基质的产物[11]。CF处理土壤Eh在较低的适宜CH4产生的范围内变动(图1),土壤DOC含量呈增加趋势(表4),保证了产甲烷底物的供给[15],其CH4排放更主要的受土壤温度的控制[16,17]。当土壤温度低于10 ℃时,CF处理CH4排放不明显(图1),研究表明[18,19],低温降低产甲烷菌活性,同时减少由温度主导的气泡迸裂的CH4传输。而当土壤温度一旦适宜产甲烷菌活性时,便有大量的CH4排放(图1)。对于TF与PM处理,土壤Eh是其CH4排放主要限制因素。两处理休闲期排水落干,土壤Eh较高(图1),影响产甲烷菌活性,不适于土壤CH4产生。同时,较之于淹水,排水落干降低土壤DOC含量,产甲烷底物降低[20,21]。此外,TF与PM处理无水层阻碍,土壤通气性增加,土壤中一些还原性物质被转化为氧化态。Inubushi等[22]研究发现稻田土壤MBC含量与土壤CH4氧化能力显著正相关,本研究中PM处理土壤MBC含量均高于CF处理,PM处理土壤氧化CH4能力得以增强。

3.2 休闲期水分管理对后续稻季稻田CH4排放的影响

各处理水稻移栽初期CH4排放差异较大(图1)。CF处理水稻移栽后立即就观测到CH4的排放,而TF与PM处理厢面及厢沟区域在水稻移栽一段时间后才观测到CH4排放,且CH4排放通量上升缓慢。这与休闲期水分管理密切相关。Xu等[23]研究指出,冬季土壤水分含量越低,其水稻生长期CH4产生率越低。Kang 等[9]采用DNDC模型得出,水稻生长期稻田CH4排放与休闲期土壤水分含量呈明显正相关。休闲期排水落干提高土壤氧化能力(Eh),在限制CH4产生的同时减少土壤中产甲烷菌数量[11],且其产甲烷菌数量与活性需要经过相当长时间的厌氧培养才能得以恢复[24]

整个水稻生长期,休闲期落干处理较淹水处理减少CH4排放52.0%。这与前人研究结果[9,23]一致。Cai 等[7]通过6a田间试验研究得出,休闲期排水落干可减少后续稻季CH4排放33%—48%。Xu 等[25]研究发现,休闲期排水落干减缓水稻生长期CH4排放,减少水稻生长期CH4排放天数。从而进一步减少水稻生长期CH4排放。

3.3 覆膜栽培对水稻生长期稻田CH4排放的影响

相较于CF处理,PM处理CH4排放减少77.6%,其中,厢面及厢沟区域分别减少70%和99%。若单考虑厢面区域CH4排放,会导致过高的估计PM处理CH4排放量。

对于PM处理厢面区域而言,厢沟水位保持在厢面下3—12 cm(烤田期除外),这样使厢面区域处于水分不饱和状态,厢面区域土壤Eh总体高于-200 mV(图1),同时由于土壤水分含量较低,厢面土壤DOC含量明显低于CF处理,在一定程度上抑制厢面区域土壤CH4产生量[26,27]。此外,厢面区域无水层,其土壤通气性明显好于淹水土壤,研究表明[28],地膜覆盖有利于O2向根际的输送,PM处理土壤MBC含量均高于CF处理可能意味着PM处理中好氧微生物生物量的增加,从而促进CH4在土壤中的氧化[22]。薄膜也会直接阻隔土壤与大气的气体交换,延迟并减少CH4排放[29]。对于PM处理厢沟区域而言,虽然非烤田期其土壤Eh较低,但厢沟区域并未种植水稻,而水稻的根际分泌物是重要的产甲烷基质且其通气组织是最主要的CH4传输途径,厢沟区域产甲烷底物有限且不能有效传输厌氧环境下产生的CH4,所以厢沟区域CH4排放不明显。

覆膜高产技术目前在四川省内推广面积达70000 hm2[13],以本实验观测所得的CH4排放通量进行初步估算,该技术可减少全年CH4排放40.3 Gg。而四川省冬水田总面积约350000 hm2[14],若水稻覆膜节水高产技术可在四川省冬水田全部应用,则可减少约0.2 Tg的四川省冬水田全年CH4排放。同时,考察减排措施对土壤性状及水稻产量的影响也是评估减排措施的一项重要指标。尽管卜玉山等[30]与Li等[31]的研究指出覆膜的增温保湿作用加速土壤有机质矿化,长期耕种可能会导致地力衰竭,但Fan等[32]的研究也表明,长期覆膜对土壤肥力无明显影响。本研究表明,水稻覆膜节水高产技术对水稻产量无明显影响,此外,随着全球气候变化异常,我国春旱日益严重,吕世华等[13]通过5a的田间试验表明,水稻覆膜节水高产技术可有效解决因干旱造成的粮食减产问题。综合来看,对于常年淹水稻田而言,覆膜栽培是值得推荐的CH4减排技术。

参考文献
[1] Hansen J E, Lacis A A. Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate change. Nature, 1990, 346(6286):713-719.
[2] Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré C L, Myneni R B, Piao S, Thornton P. Carbon and other biogeochemical cycles//Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA, Cambridge:Cambridge University Press, 2013.
[3] Hagen S C, Li C, Salas W, Ingraham P, Li J, Beach R, Frolking S. Methane Emissions From Global Paddy Rice Agriculture-a New Estimate Based on DNDC Model Simulations. AGU Fall Meeting Abstracts, 2012, 1:0147.
[4] Zhang W, Yu Y Q, Huang Y, Li T T, Wang P. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Global Change Biology, 2011, 17(12):3511-3523.
[5] 李香兰, 徐华, 李小平, 蔡祖聪. 水分管理影响稻田甲烷排放研究进展. 农业环境科学学报, 2009, 28(2):221-227.
[6] 蔡祖聪. 中国稻田甲烷排放研究进展. 土壤, 1999, (5):266-269.
[7] Cai Z C, Tsuruta H, Gao M, Xu H, Wei C F. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology, 2003, 9(1):37-45.
[8] 江长胜, 王跃思, 郑循华, 朱波, 黄耀. 耕作制度对川中丘陵区冬灌田CH4和N2O排放的影响. 环境科学, 2006, 27(2):207-213.
[9] Kang G D, Cai Z C, Feng X Z. Importance of water regime during the non-rice growing period in winter in regional variation of CH4 emissions from rice fields during following rice growing period in China. Nutrient Cycling in Agroecosystems, 2002, 64(1/2):95-100.
[10] 徐华, 蔡祖聪, 李小平. 冬作季节土壤水分状况对稻田CH4排放的影响. 农村生态环境, 1999, 15(4):20-23.
[11] 蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放. 合肥:中国科学技术大学出版社, 2009:348-349.
[12] Yan X Y, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles, 2009, 23(2):20-23,DOI:10.1029/2008GB003299.
[13] 吕世华, 曾祥忠, 任光俊, 张福锁. 水稻覆膜节水综合高产技术. 四川农业科技, 2009, (2):23-24.
[14] 陈桂权. 四川冬水田的历史变迁. 古今农业, 2014, (1):1-16.
[15] Lu Y H, Wassmann R, Neue H U, Huang C Y. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Science Society of America Journal, 2000, 64(6):2011-2017.
[16] Wassmann R, Neue H U, Bueno C, Lantin R S, Alberto M, Buendia L V, Bronson K, Papen B H, Rennenberg H. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and Soil, 1998, 203(2):227-237.
[17] Tokida T, Adachi M, Cheng W G, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Global Change Biology, 2011, 17(11):3327-3337.
[18] Tokida T, Cheng W G, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air[CO2] enrichment and soil warming experiments. Plant and Soil, 2013, 364(1/2):131-143.
[19] Schütz H, Seiler W, Conrad R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 1990, 11(2):77-95.
[20] Zhan M, Cao C G, Wang J P, Jiang Y, Cai M L, Yue L X, Shahrear A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutrient Cycling in Agroecosystems, 2011, 89(1):1-13.
[21] Naser H M, Nagata O, Tamura S, Hatano R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(1):95-101.
[22] Inubushi K, Cheng W, Mizuno T, Lou Y, Hasegawa T, Sakai H, Kobayashi K. Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil. European Journal of Soil Science, 2011, 62(1):69-73.
[23] Xu H, Cai Z C, Tsuruta H. Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Science Society of America Journal, 2003, 67(4):1147-1157.
[24] Xu H, Cai Z C, Jia Z J, Tsuruta H. Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period.//Wassmann R, Lantin R S, Neue H U, eds. Methane Emissions from Major Rice Ecosystems in Asia. Netherlands:Springer, 2001:327-332.
[25] Xu H, Cai Z C, Jia Z J. Effect of soil water contents in the non-rice growth season on CH4 emission during the following rice-growing period. Nutrient Cycling in Agroecosystems, 2002, 64(1/2):101-110.
[26] Trolldenier G. Methanogenesis during rice growth as related to the water regime between crop seasons. Biology and Fertility of Soils, 1995, 19(1):84-86.
[27] Kalbitz K, Solinger S, Park J H, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils:a review. Soil Science, 2000, 165(4):277-304.
[28] 李永山, 吴良欢, 路兴花, 赵利梅, 范巧兰. 丘陵山区覆膜旱作稻田土壤硝态氮和铵态氮动态变化规律探讨. 科技通报, 2007, 23(2):207-210.
[29] 陶丽佳, 王凤新, 顾小小. 覆膜滴灌对温室气体产生及排放的影响研究进展. 中国农学通报, 2013, 29(3):17-23.
[30] 卜玉山, 苗果园, 周乃健, 邵海林, 王建程. 地膜和秸秆覆盖土壤肥力效应分析与比较. 中国农业科学, 2006, 39(5):1069-1075.
[31] Li Y S, Wu L H, Zhao L M, Lu X H, Fan Q L, Zhang F S. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil and Tillage Research, 2007, 93(2):370-378.
[32] Fan M S, Lu S H, Jiang R F, Six J, Zhang F S. Long-term non-flooded mulching cultivation influences rice productivity and soil organic carbon. Soil Use and Management, 2012, 28(4):544-550.