生态学报  2016, Vol. 36 Issue (17): 5285-5297

文章信息

陈伟立, 李娟, 朱红惠, 陈杰忠, 姚青
CHEN Weili, LI Juan, ZHU Honghui, CHEN Jiezhong, YAO Qing.
根际微生物调控植物根系构型研究进展
A review of the regulation of plant root system architecture by rhizosphere microorganisms
生态学报[J]. 2016, 36(17): 5285-5297
Acta Ecologica Sinica[J]. 2016, 36(17): 5285-5297
http://dx.doi.org/10.5846/stxb201502260390

文章历史

收稿日期: 2015-02-26
网络出版日期: 2015-12-14
根际微生物调控植物根系构型研究进展
陈伟立1, 李娟2, 朱红惠3, 陈杰忠1, 姚青1,3     
1. 华南农业大学园艺学院, 广州 510642;
2. 仲恺农业工程学院, 广州 510225;
3. 广东省微生物研究所, 广州 510070
摘要: 根系构型是最重要的植物形态特征之一,具有可塑性,既由遗传因素控制,又受到许多环境因子的调控。近年的大量研究表明,根际微生物能够调控植物的根系构型,进而影响植物的一系列生理与生态过程。综述丛枝菌根真菌(AMF)、根瘤菌、植物根际促生菌(PGPR)等重要根际微生物类群对植物根系构型的调控模式以及相应的调控机理,并对进一步的研究进行了展望,旨在为今后的相关研究和实际应用提供参考。
关键词: 根系构型     根际微生物     调控    
A review of the regulation of plant root system architecture by rhizosphere microorganisms
CHEN Weili1, LI Juan2, ZHU Honghui3, CHEN Jiezhong1, YAO Qing1,3     
1. College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
2. Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
3. Guangdong Institute of Microbiology, Guangzhou 510070, China
Abstract: Plant root system architecture (RSA) is one of the most important characteristics of plant morphology. RSA exhibits a plasticity that is not only controlled by genetic factors but is also regulated by diverse environmental factors. Recently, a large number studies have indicated that rhizosphere microorganisms can regulate the plant RSA, and further influence an array of plant physiological and ecological processes. This paper mainly reviews the regulation patterns and corresponding mechanisms of plant RSA mediated by the important rhizosphere microorganisms, such as arbuscular mycorrhizal fungi, rhizobia, and plant growth-promoting rhizobacteria. Future research is proposed to provide reference for related research and practical applications.
Key words: root system architecture     rhizosphere microorganism     regulation    

根系在植物生长发育中起着重要的作用,既是植株吸收水分和营养的主要器官,又是支撑植株地上部的重要力量[1]。因此,根系作为植株的地下部分,其活力与植物吸收能力的强弱有直接关系,这些都直接影响着地上部分的生长与发育。由于土壤的物质和能量被植物获取和利用均是通过根系得以实现的,因此,根系的分布特征反映了土壤的物质和能量被植物利用的可能性以及生产力,而根系在土壤中的分布特征主要表现为根系构型(RSA)[2]。根系构型既受到遗传控制,又受到许多环境因子(尤其是根际微生物)的调控。本文在此主要综述了根际微生物对根系构型的调控作用及其相应机制,旨在为后来研究者提供一定的理论参考,进一步阐明根际微生物与根系构型之间的复杂关系,最终更好地被应用于生产实践。

1 植物根系构型 1.1 根系构型研究的意义

根系构型是一个重要的农学和生态学指标,指同一根系中不同级别的根在生长介质中的相互连接情况和空间分布[2],具体包括根系形态、根系拓扑结构、总根长、根系分布、根长密度和根系的延长速率、各级根的发生及在空间的三维分布、根系的生长角度和根系的扭转程度等。根系构型特点直接反映了根系的生长状况。良好的根系构型不仅可以提高根系对土壤养分和水分利用的效率,而且也是构建稳定生态群落的基础,此外,根系构型在土壤维持[3-4]和抗病性[5-6]方面也起着不可或缺的作用,所以,植物根系构型的研究对植物的生长发育及其生态稳定性具有重要意义。近年来,根系构型的研究已经成为诸多学科研究的热点问题,主要包括植物根系生长及对养分吸收利用等营养功能的研究[7-8],不同根系构型对各种土壤环境的适应性变化的定量研究[9-10],植物根系生长的三维可视化模拟研究[11-13],以及根际微生物对植物根系构型的影响[14-15]

1.2 根系构型调控的必要性

在全世界大部分地区,水分和矿质养分的有效性是作物生产力的主要限制因素,而且肥沃并具有良好生态环境的耕地极其有限[11],这对主要经济作物如水稻[16-17]、小麦[18]、玉米[19-20]及其它植物如橡胶[21]、大豆[22]、荔枝[23]、苜蓿[24]等的生长状况及产量影响巨大,而植物生长状况的良好与否很大程度上依赖于根系对土壤水分及养分吸收能力的强弱。在同样的环境条件下,良好的根系构型可以提高植株对有限资源的利用,进而提高产量和品质[25]。而根系构型具有极强可塑性的报道屡见不鲜[26],说明作物生产中对根系构型的调控是绝对可行的。

在育种界,根系构型特点已经慢慢成为育种者考虑的重要因素之一[27-28],而且很多研究也表明植株根系构型的改善会促进植株生长和发育。因此,根系构型的调控对植株的生长发育及最终产量都具有重大的现实意义,是满足当代社会对作物产量需求的一个有效解决途径。

1.3 根系构型调控的途径

根系主要的功能就是从土壤或基质中吸收水分和养分,因此通过控制水分[17, 20]和养分[29]的多少将会直接影响根系的生长发育状况及生理特性。例如,低磷可以诱导水稻[30]和拟南芥[31]侧根的发生,不过在玉米中则发现相反的结果[32],这说明磷对根系的改善作用因物种不同而不同。另外,土壤或基质的温度或外界环境的温度,以及土壤的质地和机械阻力也会对根系的生长产生影响,在一定的温度范围内,植物根系的长度随温度的升高而增长,当温度过高或过低时都会抑制根系的生长[33]。在紧实土壤中生长的根系,其伸长速度减慢,根长缩短且变粗等。另外一些微量元素如硼、钼等对根系的生长也是不可缺少的。虽然有毒元素如铜过多则会抑制主根生长,但会促进比较短的侧根的密度[34]

近年来,土壤生物因子对根系构型的调控作用日益引起关注,其中根际微生物对根系构型的调控得到广泛报道。根际微生物是土壤生态系统中最为活跃的构成因子,参与了土壤中各种生物学过程(如共生)和生物化学过程(如土壤酶),对植物的生长发育和环境适应性产生重要影响。植物根际是植物、微生物和土壤相互影响最强烈的区域,根系构型与根际微生物间相互影响,相互作用,根系构型的改变势必会影响微生物群落的构成与分布,而根际微生物的存在对植株根系的发育及生长也有重要的影响。目前关于此领域的研究主要集中于丛枝菌根真菌(AMF)、根瘤菌及植物根际促生菌(PGPR)等根际微生物如何有效地调控植物根系构型[35-39]

2 根际微生物对根系构型的调控 2.1 AMF

AMF是与植物内共生的土壤真菌,其宿主范围十分广泛,可与陆地上80%以上的维管束植物形成共生关系[40]。建立共生体后,AMF可以提高植物根系对土壤水分及养分的吸收,植物的抗旱性、耐涝性、耐盐性和抗病性,加强植物抵抗高温和重金属毒害的能力,此外AMF还可以分解有毒有机物,修复污染与退化土壤等[41-42]。虽然对AMF的认识已经非常深刻,但是其依然是植物微生物群落中一个关键却神秘的组分。

AMF侵染植物根系而形成丛枝结构,因此认为AMF对植物生理生态过程的影响与根系构型的变化密不可分,国内外有关AMF影响植物根系构型的研究已经有20多年的历史,发现AMF对植物根系构型的调控是全方位的,包括根系生物量、长度、根直径、根总表面积、根总体积、分枝数、根生长角度以及侧根发育和不定根形成等各根系指标。

在根系生物量、长度及面积等方面,柱花草(Stylosanthes gracilis)接种Glomus versiforme显著增加了根系长度,而且还观察到其基根角度有增大的趋势[43]。接种AMF时,角豆树白根、黄根生物量及玉米根系总长度、根条数(根分枝数)和根系吸收面积都显著增加[44-45],而在柑橘根系长度增加的同时,根系的平均直径却降低了[46],这与Yuan等人[47]所观察到根平均直径增加的结果不同,而且还发现不同AMF种类对植株生长效应不同,促进或抑制地上部和地下部生物量的情况时有报道[48-49]。不管是接种Glomus mosseae还是Acaulospora delicata都增加了翅果油树的根系体积、表面积和根系吸收能力,提高了根系酶体系,有利于植物抵抗各种胁迫,对扩大翅果油树植物的分布区具有重要意义[50]。除此之外,Yao等人[35]第一次报道了丛枝菌根对不同直径级别根系的分布情况的影响,发现接种G. versiforme显著增加柑橘直径 <0.4 mm根系比例,减少直径0.4—1.2 mm的根系比例。之后Wu等人[51]也发现接种AMF后在显著增加Citrus tangerine根系总长度、总投影面积、总表面积和总体积的同时,0—1 cm根总长及其在中的比例也得到增加,但根平均直径和1—2 cm分级根总长在总根长中所占比例显著减少。

在侧根及分枝方面,AMF起着巨大作用[47, 52-53]。Schellenbaum等人[54]发现,接种Glomus fasciculatum使得葡萄(Vitis vinifera)根系的一级、二级和三级根的分枝分别增加了140%、200%和266%。在其它植物种类中也发现了类似现象,接种AMF使成年番荔枝根系总数目、一级侧根数目和二级侧根数目分别增加了3、2倍和4倍,而且总根、不定根、一级侧根和二级侧根的长度都有不同程度的增加[55];接种Glomus intraradices虽然没有增加水稻冠根的数量,但是由冠根发育出来的大侧根和细侧根数量都比对照高出三分之一,而且还发现细侧根数量的增加是由于大侧根数量增加引起的,不受接菌影响[36]。而且在干旱和水涝条件下,接种AMF分别促进水稻分枝指数增加2.4—4.1倍和1.7—2.6倍[56]。AMF同样促进荔枝[57]、柑橘[58]和欧洲桤木[59]等木本植物的根系分枝,但显著减少后者根毛数量。 此外,在低温[60]、水分胁迫[39, 61-63]、盐胁迫[41, 64]、原油污染[65]的土壤中,AMF对根系构型的改善愈发明显,这促进了植物在逆境条件下的正常生长发育。而且研究发现感染立枯病的番茄在接种G. mosseae后,根系总长度和根尖数量增加,这在一定程度上使植株更加抗病[66]。另外在组培、扦插和嫁接试验中,AMF对植物根系的生长发育起着促进作用,在Williams香蕉(Musa AAA)上,G. versiforme虽然显著地增加组培苗的须根数量,但是须根的平均长度降低,导致整个根系中须根的总长没有变化[67]。AMF可以改善一品红扦插时的生根表现,显著促进了不定根的生成[68],也会增加西瓜嫁接苗的根系生物量[69]

另外还发现,复合菌种处理的番茄根系总根长和根鲜重均显著高于单一菌株处理[70]。干旱下接种内生菌根真菌、外生菌根真菌、混合接种对滇柏和楸树根系影响不一致,滇柏以外生菌和混合菌接种对根系生物量的效果更显著,而楸树以内生菌的效果最为显著,而且滇柏根系平均直径、总长度及表面积呈增加趋势[71]

虽然上述研究中报道的都是AMF对根系构型特点改善作用更大,但是其不影响或减少根系长度或侧根数量的报道也有许多,例如接种时湿地植物Bidens frondosa根系长度和表面积要低于不接种处理,而接种对Eclipta prostrata根系构型影响不大[72]。而在多年生黑麦草中,AMF虽然没改变根系生物量,但显著减少根长度,根直径和根数量[73]。另外有研究指出当植株所接AMF种类不是其优势菌株时,不会增加根系长度和促进侧根的发生,甚至会比不接菌时的根系长度和侧根数量都要低[74-75],其中很大的原因可能是其与植株根系竞争碳素。由此可见,AMF对根系构型的影响错综复杂,而这可能是由于不同植物种类、不同菌剂种类、不同试验条件等造成的,反过来,不同种类植株根系构型不同也会影响它们对AMF的依赖性。

2.2 根瘤菌

根瘤菌是一类广泛分布于土壤中的革兰氏阴性细菌,是与豆科植物共生的重要微生物,它能侵染豆科植物根部或茎部而形成根瘤或茎瘤,然后在根瘤或茎瘤中分化成类菌体,将空气中的氮素固定为植物可吸收利用的氨。Hafeez等[76]发现根瘤菌Rhizobium leguminosarum使得棉花根干重、根生物量和根表面积分别增加了248%、332%和283%,而且会促进蒺藜状苜蓿的根毛卷曲及增加分枝的程度,进而侧根数量增多[77-78],还发现百脉根根瘤菌会促进拟南芥侧根发生和伸长[79],但是也有研究者发现接种根瘤菌对大豆根系长度没有影响,但会增加根表面积和体积[80]。不过,目前关于根瘤与根系构型的直接研究并不多见,诸如根瘤在根系上如何分布的以及根瘤的形成对根系构型又会有怎样的促进或抑制作用等问题尚未得到深入探讨。

2.3 PGPR

PGPR是栖居于植物根围中的一类土壤细菌,通过诸多方式来促进植株生长,如产生植物激素(生长素和赤霉素等)、氮固定、溶磷、抵抗重金属污染和改善根系构型等,而且可以减少肥料的施用[81-82],常见的如假单孢菌属和芽孢杆菌属等。通常情况下,PGPR作为生物肥料、植物促进和生物防除方面的接种剂,在农业生产起着重要的作用[83]。但是关于PGPR对植物根系构型影响的研究并不是很多,但是,在已报道的研究中发现其在改变根系构型方面所起作用也很重要。 大部分的PGPR都增加植株根毛密度和根长度及根生物量,促进根毛从近根尖部位开始形成[84-86]Serratia proteamaculans会增加鹰嘴豆(Cicer arietinum)根长、侧根数量和长度以及根生物量[87],接种Azospirillum lipoferum会增加玉米幼苗根表面积、根生物量、根长和根尖数量,促进根系分枝,但没有改变根平均直径[88],而之前的研究发现,接种Azospirillum brasilense在增加菜豆根长和根鲜重的同时会减少根直径,而且在菜豆苗生长的初始阶段,细根在长根中所占比例大[89],但是Nosheen等人[81]发现接种PGPR(特别是A. brasilensePseudomonas stutzeri)同时显著地增加红花(Carthamus tinctorius)根长、根面积和根直径。Guti E Rrez-Luna等人[90]在柠檬根际土壤中成功分离出3种促进主根生长和侧根发育的菌株,经鉴定分别为蜡样芽胞杆菌(Bacillus cereus),简单芽孢杆菌(Bacillus simplex)和芽孢杆菌(Bacillus sp),均属于PGPR,它们是通过释放挥发性有机化合物来改变根系构型的。此外在有AMF或施用化肥时,接种PGPR的效果会更加显著[91]。 与AMF类似,PGPR也有不影响甚至抑制根系生长的效应,例如,接种Pseudomonas trivialis会使得杂草双雄雀麦(Bromus diandrus)根系生物量、根表面积、根体积和根尖数量减少,从而保证硬质小麦(Triticum durum)的正常生长[92]。两种根际促生菌假单胞细菌(Pseudomonas putida)和肠杆菌(Enterobacter cloacae)对黄瓜根系生长的影响不明显,这可能与植物种类有关,或者是由于植物对根际促生菌的选择差异性。

2.4 其他根际微生物

除了AMF、根瘤菌和PGPR外,其它根际微生物如外生菌根真菌等对植物根系构型也有一定的影响。

不同于AMF,外生菌根共生体只存在于5%以下陆生植物种类中,但是许多生长于温带森林的松科和山毛榉科以及热带亚热带地区的桃金娘科和龙脑香科都以外生菌根为主[93],主要功能是扩大根系对水分和养分的吸收面积,分泌多种生物酶,提高植物根系对氮、磷和钾等养分的吸收,产生生物素、生长素等促进植物生长,提高植物的抗逆性和抗病性,以及活化土壤[94-95]。分别接种黄色须腹菌(Rhizopogen luteous)、彩色豆马勃(Pisolithus tinctorius)和美味牛肝菌(Boletus edulis)3种外生菌根真菌后,黑松(Pinus thunbergii)幼苗许多根系参数均比对照有不同程度的增加,侧根与主根之间夹角从大到小依次为R. luteousB. edulisP. tinctorius、对照,R. luteous有效扩大了根系吸收的空间范围[96]。另外,P. tinctoriusBurkholderia glathei对滇柏[71]和松树[97]的根系效应也与上述相似。此外对分别来自正常森林和火烧森林的假山毛榉(Nothofagus alpina)幼苗根系比较发现,外生菌根真菌(Descolea antarctica)促使其根系系统更加深入土壤,且侧根及细根主要分布在下层土壤,以避免上层较低的相对湿度[98]。另外干旱胁迫下,外生菌根真菌虽然没有增加幼年欧洲山毛榉(Fagus sylvatica)植株生物量,但显著增加了根尖数量和细根形成,特别是0.2—0.8 mm级别根[99]

除了外生菌根真菌外,弗兰克氏菌是一类能与多种非豆科木本双子叶植物共生固氮的放线菌,它也显著促进欧洲桤木(Alnus glutinosa)幼苗根系分枝,但会显著减少根毛数量[59]。而且有意思的是,Kawaguchi等人[100]用从绿色木霉菌(Trichoderma viride)分离出来的木聚糖酶处理烟草根系发现主根细胞分裂和细胞伸长受到抑制,但是根系维管束和根毛的形成并不受任何影响,而且若移除该木聚糖酶,根系构型会重新改变,说明根际微生物分泌的生物酶可能对根系构型起着一定的调控作用。

3 根际微生物调控根系构型的机制

植物根系构型的改变主要是有内源性因素和外在环境因素两方面的影响,而根际微生物调控植物根系构型主要是从以下几方面来实现(图 1):(1)改变影响植物根系构型的内在因子,如侧根数量的增加等;(2)改变植株对矿质养分的吸收,主要为氮和磷等;(3)影响植物激素的水平与平衡;(4)影响植物碳素营养的分配。

图 1 3种根际微生物调控植株根系构型的相关机制 Fig. 1 The mechanisms of three rhizospheric microorganisms′ regulation on plant Root system architecture
3.1 影响植物根系构型的内在因子

众所周知,不同种植物,其根系构型的差异非常大。典型的双子叶植物的根系是由主根、侧根、不定根构成的直根系;典型的禾本科单子叶植物的根系是由主根、侧根、初生根、冠根、不定根构成的须根系[101],另外,木本植物与草本植物的根系也明显不同。

除去物种之间的差异性,侧根是影响植物根系构型最主要的内在因子,其在根系响应土壤环境条件方面起着至关重要的作用,因此,环境因子往往是通过影响侧根的发生来影响根系构型[15, 102-103]。高等植物侧根的形成主要包括4个关键阶段[101]:(1)中柱鞘建成细胞受到刺激发生分化;(2)中柱鞘细胞的极性不对称分裂产生侧根原基;(3)侧根原基细胞膨大突破主根最处层;(4)侧根分生组织的活化与侧根生长。早在20世纪90年代,Taylor和Scheuring[104]就发现番茄根系的RSI-1基因在侧根原基发生的早期就被启动,一直持续到侧根刚刚突出主根,认为RSI-1可以作为侧根发生过程中的分子标记;另外在拟南芥的根系还发现LRP1基因在侧根和不定根的原基发生的早期启动,而在侧根突出主根之前关闭,也可作为侧根发生的分子标记[105]。不过到目前为止还没确定哪个标记基因可以用于研究侧根发生的关键阶段。

根系活力也是影响根系构型的另一重要因素。在Kawaguchi等人[100]用从T. viride分离出来的木聚糖酶处理烟草根系的研究中发现主根细胞分裂和细胞伸长受到抑制可能是根系中编码细胞周期素依赖性激酶(CDK)的基因表达受阻导致根分生组织活力的降低。在辣椒中接种3种AMF菌剂(Glomus etunicatumG. mosseaeG. versiforme)都显著增加了根系活力以及根系抗氧化酶活性,一级侧根数、根表面积、根体积和根质量都比对照高出许多,其中G. mosseae的效果最佳[106]。根生长角度对根系构型的影响同样不可忽略,Uga等人[107]在水稻上发现DRO1是控制深根比率的一个主要数量性状位点,而且干旱条件下DRO1会增大根生长角度,从而促进深根系统的形成,提高水稻产量。

3.2 激素调控

植物激素是调控根发育和构型的主要因素。研究发现生长素运输途径对根系结构的调控主要表现在以下方面:(1) 参与主根的生长;(2) 参与侧根的形成与伸长,具体为参与侧根原基组织的生长,使侧根从母根上突出;(3) 调控盐胁迫条件下根系的发育过程,从而使根系的生长发育适应盐胁迫。其中,最重要的,植物生长素是侧根发生和发育的重要信号[15]。添加外源生长素能够增加侧根的数目,抑制生长素的运输则减少侧根的数目[108],而且还发现生长素的峰值出现在侧根的发生位置以及侧根突出和伸长阶段[101]。AMF会促使根系合成生长素增加,并且生长素信号是早期丛枝菌根形成所必需的[109],因此接种AMF改变玉米根系构型可能是由于其增加了IBA所导致[110],且在番茄中也发现了类似的现象[111]。一些PGPR可以释放IAA改变植株生长素含量,进而促进植株形成一个细长且高度分枝的根系系统[112]。同样,在Jiang等人[113]的研究中发现,以细菌为生的线虫类会促进土壤中产生IAA的细菌生长和增加土壤中氮营养和IAA,进而促使拟南芥形成高度分枝根系系统,而且根系更长更细。另一方面,P. trivialis会通过产生高浓度的IAA来抑制杂草根系的生长,从而真正意义上实现生物防控[92]。分子水平上,侧根发生最重要的一种生长素蛋白是SLR1/IAA14,slr1突变体会钝化IAA14而不能形成侧根[114]KRP1KRP2是编码细胞周期蛋白激酶(CDK)的基因,Himanen等人[115]研究发现,KRP1KRP2的表达可以抑制细胞周期从G1期向S期转变;KRP2的超表达明显减少侧根的数目;生长素NAA则抑制KRP1KRP2的表达,由此可见,生长素通过调控细胞分裂周期来影响侧根的发生。LAX(like AUX1)是介导生长素从胞外向胞内转移的载体蛋白,而载体突变体lax3的侧根数目减少,表明生长素的胞内胞外转移也决定着侧根的发育[116]。 此外,细胞分裂素是另一个重要的影响侧根发育的植物激素。由于在许多生理过程中拮抗生长素的作用,细胞分裂素能够抑制许多植物的侧根发育[7, 117],报道指出,细胞分裂素含量降低的拟南芥突变体的侧根数目增加[118],添加外源细胞分裂素则减少侧根的数目[119]。其他对侧根发育产生影响激素包括乙烯[120]、赤霉素[121]、油菜素内酯[122]、脱落酸[123-124]、水杨酸[125]、多胺[51]以及越来越引起大家关注的独脚金内脂[126]等,而且细胞分裂素和脱落酸反向调节侧根发生,而生长素和油菜素内酯对侧根发生起着促进作用[127]。AMF侵染植物根系形成菌根共生体过程中能诱导植物合成多种信号物质,如水杨酸、茉莉酸、类黄酮、一氧化氮和过氧化氢等[128],从而一定程度上调控根系的发育;拥有ACC脱氨酶的根际细菌会通过减少乙烯的含量促进根系生长来调控根系构型[87],此外,PGPR也可通过产生生长素或细胞分裂素来调控根系构型和促进茎生长[129]

3.3 矿质养分调控

研究表明,不论是AMF,还是根瘤菌或PGPR都可以改善植物对养分的吸收[130],从而改变植物根系构型,例如B. glathei促进松树根系改善主要是通过加强矿物风化来改善植株营养状况实现的[97];还有,与对照处理相比,滇柏的接种处理和楸树的内生菌根真菌和混合菌根真菌处理对N和P的吸收都显著增加,进而增加根系生物量[71]

AMF与根系共生后,能显著促进根系对土壤矿质营养元素特别是P的吸收,甚至在土壤温度降低植物生长和P吸收受抑的情况下,AMF仍能增加植物体内P含量[131],但是如果土壤中含P丰富,丛枝菌根对植株的贡献会大大折扣,而且也相应地发现AMF改变根系构型通常是在低磷条件下[132],因此低磷促进侧根的形成,尤其是浅层根系的生长[133]。进一步研究发现,接种AMF玉米根中磷酸盐转运体基因ZEAma:Pht1;6(丛枝菌根诱导)表达水平为不接菌的26—135倍,提高了茎中磷含量,进而促进了植株生长;在增施少量磷肥时,会显著增加该基因的表达,但是不影响ZEAma:Pht1;3(磷饥饿诱导)的表达[134]

植株高氮水平抑制侧根的形成和生长,PGPR菌株Phyllobacterium sp会改善高外源硝酸根离子对拟南芥侧根生长的抑制作用[135]。不过局部高氮会促进侧根的形成和生长[136],在低营养条件下,AMF促进了角豆树根系对无机氮的吸收,且使该根系具有高浓度的氮素[44]。Boukcim等[137]发现AMF在氮利用率高的田间挪威云杉中会显著增加根系侧根数量,减少所有侧根的长度,而在氮利用率低时会显著减少侧根数量,只增加三级侧根数量。中度干旱胁迫和光照下,外生菌根真菌会促进幼年F. sylvatica根系对氮素的吸收,从而促进根系生长[99]。不过有意思的是,在营养丰富的土壤中,温带森林菌根树更倾向于通过增殖根系来汲取更多养分[138],说明AMF在该环境条件下对根系构型的影响可能远小于在土壤营养贫瘠时。

3.4 碳素调控

根系的生长和发育依赖植物形成的光合碳水化合物,碳水化合物可直接作为代谢底物或生长调节物质影响细胞的分裂,导致根系构型发生变化[139]。植物地上部分与地下部在利用碳水化合物方面存在着竞争关系,而在共生微生物的存在下,地上部分的蔗糖经长距离运输向根系的分配比率提高,例如“菌根碳库”的存在会促使糖向菌根化细胞中转移[104, 140],因此,根际微生物可能通过调控植株碳素营养的运输来改变根系构型。接种AMF会显著增加枳壳幼苗叶片葡萄糖和蔗糖含量,但减少根葡萄糖和蔗糖含量[48],不过在白三叶草中,却是增加了根系的蔗糖含量[141],可能是因为不同菌剂种类对木本植株和草本植株的作用模式不同所致,但两个研究都表明接菌增加了植株根系总长度、根表面积以及总体积。另一方面,在春夏季,许多植物叶片增多且光合作用活跃,这使得大量的碳水化合物被运输至地下部,促进细根的形成以维持AMF的生存[142]。另外,接种AMF时,一品红插条的叶片糖含量增加,且碳水化合物动力学开始变化,从而根系生长得到促进[68]。本文之前所描述的AMF减少根系长度及侧根数量的原因可能是其与宿主植株竞争碳水化合物所致。除了AMF,PGPR和根瘤菌通常都能增加根系生物量[143-145],说明它们也参与到碳水化合物的运输过程中,最终导致根系构型发生改变,不过目前关于根际微生物调控碳水化合物组分及分配及其对根系构型影响的研究鲜见报道,特别是后两种微生物。

4 展望

虽然土壤根际微生物影响不同植物根系构型的研究日益增多,相应地也提出了一些调控机制,但是,不同微生物改变根系构型的差异性及最主要的调控途径还需要更深层次的理解。由于根系是生长于土壤中,不能直接观察,因此选择合适的试验方案至关重要,需要不断地优化,以便更直观地了解根际微生物对植株根系构型的调控作用。对根系构型的研究,主要是为了仿真出根系在不同的生长条件下的分布情况,从而得出更加有利于生产和实验的品种或者根系结构,可以更好的利用土壤的营养,提高产量和品质。就目前研究方向而言,以下几方面可能值得重视和深入探讨:(1)AMF与其它根际微生物相互作用(协同或竞争)对植株根系构型有哪些影响?这些影响的作用机制是什么?这些问题尚不明确,需要深入研究。(2)根际微生物的侵染或定殖需要消耗根系的碳素(光合产物),而碳素也是根系构建的物质基础,那么,根际微生物对碳素的竞争是如何调控根系构型的?在这一调控途径过程中,何种碳素(葡萄糖、果糖或蔗糖)起着关键作用?(3)根系构型与作物(如菜豆)的生产力密切相关,在农业生产中如何有效利用根际微生物来改善根系构型,使植株更加适应周围环境变化,从而实现高产优质。总之,根际微生物对植物根系构型的调控意义深远,值得进行更多的深入研究。

参考文献
[1] Bailey P H J, Currey J D, Fitter A H. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. Journal of Experimental Botany , 2002, 53 (367) : 333–340. DOI:10.1093/jexbot/53.367.333
[2] Lynch J. Root architecture and plant productivity. Plant Physiology , 1995, 109 (1) : 7–13.
[3] 屈志强, 刘连友, 吕艳丽. 沙生植物构型及其与抗风蚀能力关系研究综述. 生态学杂志 , 2011, 30 (2) : 357–362.
[4] 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略. 植物生态学报 , 2008, 32 (6) : 1268–1276.
[5] Cichy K A, Snapp S S, Kirk W W. Fusarium root rot incidence and root system architecture in grafted common bean lines. Plant and Soil , 2007, 300 (1/2) : 233–244.
[6] Norman J R, Atkinson D, Hooker J E. Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant and Soil , 1996, 185 (2) : 191–198. DOI:10.1007/BF02257524
[7] Aloni R, Aloni E, Langhans M, Ullrich C I. Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany , 2006, 97 (5) : 883–893. DOI:10.1093/aob/mcl027
[8] Beebe S E, Rojas-Pierce M, Yan X L, Blair M W, Pedraza F, Muñoz F, Tohme J, Lynch J P. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science , 2006, 46 (1) : 413–423. DOI:10.2135/cropsci2005.0226
[9] Hishi T. Heterogeneity of individual roots within the fine root architecture:causal links between physiological and ecosystem functions. Journal of Forest Research , 2007, 12 (2) : 126–133. DOI:10.1007/s10310-006-0260-5
[10] 刘灵, 廖红, 王秀荣, 严小龙. 磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系. 应用生态学报 , 2008, 19 (3) : 564–568.
[11] Bingham I J, Wu L H. Simulation of wheat growth using the 3D root architecture model SPACSYS:validation and sensitivity analysis. European Journal of Agronomy , 2011, 34 (3) : 181–189. DOI:10.1016/j.eja.2011.01.003
[12] Mooney S J, Pridmore T P, Helliwell J, Bennett M J. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil , 2012, 352 (1/2) : 1–22.
[13] Fang S Q, Clark R, Liao H. 3D Quantification of plant root architecture in situ//Mancuso S, ed. Measuring Roots:A Updated Approach. New York:Springer, 2012:135-148.
[14] Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I. Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus:root morphology, growth, and mineral nutrition of olive plants. Scientia Agricola , 2013, 70 (3) : 185–194. DOI:10.1590/S0103-90162013000300007
[15] Krome K, Rosenberg K, Dickler C, Kreuzer K, Ludwig-Müller J, Ullrich-Eberius C, Scheu S, Bonkowski M. Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant and Soil , 2010, 328 (1/2) : 191–201.
[16] Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa Hi, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics , 2013, 45 (9) : 1097–1102. DOI:10.1038/ng.2725
[17] 王秋菊, 李明贤, 赵宏亮, 迟力勇. 控水灌溉对水稻根系生长影响的试验研究. 中国农学通报 , 2008, 24 (8) : 206–208.
[18] 杨永辉, 武继承, 吴普特, 黄占斌, 赵西宁, 管秀娟, 何方. 保水剂用量对小麦不同生育期根系生理特性的影响. 应用生态学报 , 2011, 22 (1) : 73–78.
[19] Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. European Journal of Agronomy , 2012, 38 : 54–63. DOI:10.1016/j.eja.2011.12.003
[20] 姜春光, 卢树昌, 陈清. 模拟不同降雨条件对日光温室填闲作物糯玉米产量、根系生长及养分吸收的影响. 北方园艺 , 2011 (17) : 71–75.
[21] 华元刚, 林清火, 罗微, 茶正早, 林钊沐. 氮素供应对橡胶树根系生长的影响. 中国农学通报 , 2006, 22 (6) : 421–424.
[22] 乔云发, 韩晓增. 长期定量施肥对大豆根系形态和根瘤性状的影响. 大豆科学 , 2011, 30 (1) : 119–122.
[23] 张承林, 付子轼. 水分胁迫对荔枝幼树根系与梢生长的影响. 果树学报 , 2005, 22 (4) : 339–342.
[24] 李锦华, 陈积山, 田福平, 常根柱. 苜蓿根系构型研究展望//2007年中国草学会青年工作委员会学术研讨会论文集. 北京:中国草学会青年工作委员会 , 2007 : 126–129.
[25] 单立山, 李毅, 董秋莲, 耿东梅. 红砂根系构型对干旱的生态适应. 中国沙漠 , 2012, 32 (5) : 1283–1290.
[26] Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison R J, Blatt M R, Amtmann A. EZ-Rhizo:integrated software for the fast and accurate measurement of root system architecture. The Plant Journal , 2009, 57 (5) : 945–956. DOI:10.1111/tpj.2009.57.issue-5
[27] Fita A, Nuez F, Picó B. Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica , 2011, 181 (3) : 323–339. DOI:10.1007/s10681-011-0432-z
[28] Postma J A, Jaramillo R E, Lynch J P. Towards modeling the function of root traits for enhancing water acquisition by crops//Response of Crops to Limited Water:Understanding and Modeling Water Stress Effects on Plant Growth Processes. America:American Society of Agronomy , 2008 : 251–275.
[29] Lynch J P. Root architecture and nutrient acquisition//BassiriRad H, ed. Nutrient Acquisition by Plants:An Ecological Perspective. Berlin:Springer, 2005:147-183.
[30] Zhang Y L, Duan Y H, Shen Q R. Screening of physiological indices for response of rice to nitrate. Acta Pedologica Sinica , 2004, 41 (4) : 571–576.
[31] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability:a review. Annals of Botany , 2013, 112 (2) : 391–408. DOI:10.1093/aob/mcs285
[32] Li Z X, Xu C Z, Li K P, Yan S, Qu X, Zhang J R. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone. BMC Plant Biology , 2012, 12 (1) : 89–89. DOI:10.1186/1471-2229-12-89
[33] 张旭丽, 李洪. 玉米根系与环境条件的关系. 山西农业科学 , 2010, 38 (7) : 120–122.
[34] Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana:Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry , 2010, 48 (8) : 673–682. DOI:10.1016/j.plaphy.2010.05.005
[35] Yao Q, Wang L R, Zhu H H, Chen J Z. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae , 2009, 121 (4) : 458–461. DOI:10.1016/j.scienta.2009.03.013
[36] Gutjahr C, Casieri L, Paszkowski U. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist , 2009, 182 (4) : 829–837. DOI:10.1111/j.1469-8137.2009.02839.x
[37] Lopez L D, Shantharaj D, Liu L, Bais H, Yu J Y. Robust image-based 3D modeling of root architecture. Computer Graphics International , 2011 : 1–10.
[38] Nichols S N, Crush J R, Woodfield D R. Effects of inbreeding on nodal root system morphology and architecture of white clover (Trifolium repens L.). Euphytica , 2007, 156 (3) : 365–373. DOI:10.1007/s10681-007-9386-6
[39] Wu Q S, Zou Y N, Huang Y M. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology , 2013, 6 (1) : 37–43. DOI:10.1016/j.funeco.2012.09.002
[40] Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. London:Academic Press. 2010.
[41] Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis , 2013, 59 (2) : 65–76. DOI:10.1007/s13199-012-0191-1
[42] Aranda E, Scervino J M, Godoy P, Reina R, Ocampo J A, Wittich R M, García-Romera I. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environmental Pollution , 2013, 181 : 182–189. DOI:10.1016/j.envpol.2013.06.034
[43] Yao Q, Zhu H H, Chen J Z, Christie P. Influence of an arbuscular mycorrhizal fungus on competition for phosphorus between sweet orange and a leguminous herb. Journal of Plant Nutrition , 2005, 28 (12) : 2179–2192. DOI:10.1080/01904160500323537
[44] Cruz C, Green J J, Watson C A, Wilson F, Martins-Loução M A. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza , 2004, 14 (3) : 177–184. DOI:10.1007/s00572-003-0254-5
[45] 黄京华, 刘青, 李晓辉, 曾任森, 骆世明. 丛枝菌根真菌诱导玉米根系形态变化及其机理. 玉米科学 , 2013, 21 (3) : 131–135.
[46] Yao Q, Lin F X, Chen J Z, Lei X T, Zhu H H. Responses of citrus seedlings and a leguminous herb, Stylosanthes gracilis, to arbuscular mycorrhizal fungal inoculation. Acta Horticulturae , 2008, 773 : 63–67.
[47] Yuan L H. Effects of arbuscular mycorrhizal fungi on Elaeagnus mollis diels seedlings' growth and root. American-Eurasian Journal of Agricultural & Environmental Science , 2015, 15 (2) : 177–183.
[48] Wu Q S, Zou Y N, He X H, Luo P. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regulation , 2011, 65 (2) : 273–278. DOI:10.1007/s10725-011-9598-6
[49] Thilagar G, Bagyaraj D J. Influence of different arbuscular mycorrhizal fungi on growth and yield of chilly. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences , 2015, 85 (1) : 71–75. DOI:10.1007/s40011-013-0262-y
[50] 袁丽环, 闫桂琴, 朱志敏. 丛枝菌根(AM)真菌对翅果油树幼苗根系的影响. 西北植物学报 , 2009, 29 (3) : 580–585.
[51] Wu Q S, He X H, Zou Y N, Liu C Y, Xiao J, Li Y. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regulation , 2012, 68 (1) : 27–35. DOI:10.1007/s10725-012-9690-6
[52] Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science , 2013, 4 : 204–204.
[53] 江夏, 陈伟立, 徐春香, 朱红惠, 姚青. 丛枝菌根真菌和磷水平对番茄幼苗侧根形成的影响. 应用生态学报 , 2015, 26 (4) : 1186–1192.
[54] Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter A H. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Annals of Botany , 1991, 68 (2) : 135–141.
[55] Padilla I M G, Encina C L. Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill. plants. Scientia Horticulturae , 2005, 106 (3) : 360–369. DOI:10.1016/j.scienta.2005.05.001
[56] Vallino M, Fiorilli V, Bonfante P. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant, Cell & Environment , 2014, 37 (3) : 557–572.
[57] Yao Q, Zhu H H, Chen J Z. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Scientia Horticulturae , 2005, 105 (1) : 145–151. DOI:10.1016/j.scienta.2005.01.003
[58] 张艺灿, 赵思, 邹英宁, 吴强盛. 丛枝菌根真菌对限根栽培枳生长和根系构型的影响. 湖北农业科学 , 2014 (11) : 2588–2590.
[59] Orfanoudakis M, Wheeler C T, Hooker J E. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza , 2010, 20 (2) : 117–126. DOI:10.1007/s00572-009-0271-0
[60] Wu Q S, Zou Y N. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae , 2010, 125 (3) : 289–293. DOI:10.1016/j.scienta.2010.04.001
[61] 何跃军, 钟章成. 水分胁迫和接种丛枝菌根对香樟幼苗根系形态特征的影响. 西南大学学报:自然科学版 , 2012, 34 (4) : 33–39.
[62] 王如岩, 于水强, 张金池, 丛日亮, 王群, 陈丽莎, 司登宇. 水分胁迫下菌根真菌对滇柏(Cupressus duclouxiana Hichel)幼苗生长和养分吸收的影响. 中国岩溶 , 2011, 30 (3) : 313–319.
[63] Zhao R X, Guo W, Bi N, Guo J Y, Wang L X, Zhao J, Zhang J. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology , 2015, 88 : 41–49.
[64] Wu Q S, Zou Y N, He X H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum , 2010, 32 (2) : 297–304. DOI:10.1007/s11738-009-0407-z
[65] Langer I, Syafruddin S, Steinkellner S, Puschenreiter M, Wenzel W W. Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant and Soil, , 2010, 332 (1/2) : 339–355.
[66] Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. European Journal of Plant Pathology , 2005, 111 (3) : 279–288. DOI:10.1007/s10658-004-4585-7
[67] 姚青, 朱红惠, 羊宋贞. 丛枝菌根真菌对香蕉试管苗植株生长和矿质营养吸收的影响. 果树学报 , 2004, 21 (5) : 425–428.
[68] Druege U, Xylaender M, Zerche S, Von Alten H. Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants. Mycorrhiza , 2006, 17 (1) : 67–72. DOI:10.1007/s00572-006-0074-5
[69] 陈可, 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌对西瓜嫁接苗生长和根系防御性酶活性的影响. 应用生态学报 , 2013, 24 (1) : 135–141.
[70] 唐超, 李敏, 刘永举, 刘润进. 单一及复合AM真菌初侵染对番茄苗的生理影响. 中国农学通报 , 2013, 29 (13) : 114–119.
[71] 王如岩, 于水强, 张金池, 周垂帆, 陈莉莎. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响. 南京林业大学学报:自然科学版 , 2012, 36 (6) : 23–27.
[72] Stevens K J, Wall C B, Janssen J A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata L., grown under three levels of water availability. Mycorrhiza , 2011, 21 (4) : 279–288. DOI:10.1007/s00572-010-0334-2
[73] Endlweber K, Scheu S. Interactions between mycorrhizal fungi and Collembola:effects on root structure of competing plant species. Biology and Fertility of Soils , 2007, 43 (6) : 741–749. DOI:10.1007/s00374-006-0157-7
[74] Lu N, Zhou X, Cui M, Yu M, Zhou J X, Qin Y S, Li Y. Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions. Forests , 2015, 6 (3) : 767–747.
[75] Urcoviche R C, Gazim Z C, Dragunski D C, Barcellos F G, Alberton O. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products , 2015, 67 : 103–107. DOI:10.1016/j.indcrop.2015.01.016
[76] Hafeez F Y, Safdar M E, Chaudhry A U, Malik K A. Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture , 2004, 44 (6) : 617–622. DOI:10.1071/EA03074
[77] Catoira R, Timmers A C, Maillet F, Galera C, Penmetsa R V, Cook D, Denarie J, Gough C. The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development , 2001, 128 (9) : 1507–1518.
[78] Barea J M, Tobar R M, Azcón-Aguilar C. Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytologist , 1996, 134 (2) : 361–369. DOI:10.1111/nph.1996.134.issue-2
[79] Desbrosses G, Queruel N, Poitout A, Touraine B. Fixing and non-fixing rhizobia affect Arabidopsis root architecture by interfering with the auxin signaling pathway. Molecular Microbial Ecology of the Rhizosphere , 2013, 1-2 : 327–333.
[80] Wang X R, Pan Q, Chen F X, Yan X L, Liao H. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza , 2011, 21 (3) : 173–181. DOI:10.1007/s00572-010-0319-1
[81] Nosheen A, Bano A, Ullah F, Farooq U, Yasmin H, Hussain I. Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.). African Journal of Biotechnology , 2011, 10 (59) : 12639–12649.
[82] Babalola O O. Beneficial bacteria of agricultural importance. Biotechnology Letters , 2010, 32 (11) : 1559–1570. DOI:10.1007/s10529-010-0347-0
[83] Lugtenberg B J J, Chin-A-Woeng T F C, Bloemberg G V. Microbe-plant interactions:principles and mechanisms. Antonie Van Leeuwenhoek , 2002, 81 (1/4) : 373–383.
[84] Remans T, Thijs S, Truyens S, Weyens N, Schellingen K, Keunen E, Gielen H, Cuypers A, Vangronsveld J. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Annals of Botany , 2012, 110 (2) : 239–252. DOI:10.1093/aob/mcs105
[85] Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science , 2008, 175 (1/2) : 178–189.
[86] Dobbelaere S, Croonenborghs A, Thys A, Broek A V, Vanderleyden J. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil , 1999, 212 (2) : 153–162. DOI:10.1023/A:1004658000815
[87] Shahzad S M, Khalid A, Arshad M, Tahir J, Mahmood T. Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. European Journal of Soil Biology , 2010, 46 (5) : 342–347. DOI:10.1016/j.ejsobi.2010.05.007
[88] Zemrany H E, Czarnes S, Hallett P D, Alamercery S, Bally R, Monrozier L J. Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil , 2007, 291 (1/2) : 109–118.
[89] German M A, Burdman S, Okon Y, Kigel J. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils , 2000, 32 (3) : 259–264. DOI:10.1007/s003740000245
[90] Gutiérrez-Luna F M, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz H R, Macías-Rodríguez L. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis , 2010, 51 (1) : 75–83. DOI:10.1007/s13199-010-0066-2
[91] Gamalero E, Trotta A, Massa N, Copetta A, Martinotti M G, Berta G. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza , 2004, 14 (3) : 185–192. DOI:10.1007/s00572-003-0256-3
[92] Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T. Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum):specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. Biocontrol , 2010, 55 (4) : 561–572. DOI:10.1007/s10526-010-9285-y
[93] Landeweert R, Hoffland E, Finlay R D, Kuyper T W, van Breemen N. Linking plants to rocks:ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology & Evolution , 2001, 16 (5) : 248–254.
[94] Baldrian P. Ectomycorrhizal fungi and their enzymes in soils:is there enough evidence for their role as facultative soil saprotrophs?. Oecologia , 2009, 161 (4) : 657–660. DOI:10.1007/s00442-009-1433-7
[95] Courty P E, Buée M, Diedhiou A G, Frey-Klett P, Le Tacon F, Rineau F, Turpault M P, Uroz S, Garbaye J. The role of ectomycorrhizal communities in forest ecosystem processes:new perspectives and emerging concepts. Soil Biology and Biochemistry , 2010, 42 (5) : 679–698. DOI:10.1016/j.soilbio.2009.12.006
[96] 吴小芹, 郑玲, 叶建仁. 黑松三种菌根苗根系构型差异及其与生长的关系. 生态学报 , 2009, 29 (10) : 5493–5499.
[97] Calvaruso C, Turpault M P, Frey-Klett P. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees:a budgeting analysis. Applied and Environmental Microbiology , 2006, 72 (2) : 1258–1266. DOI:10.1128/AEM.72.2.1258-1266.2006
[98] Palfner G, Canseco M I, Casanova-Katny A. Post-fire seedlings of Nothofagus alpina in Southern Chile show strong dominance of a single ectomycorrhizal fungus and a vertical shift in root architecture. Plant and Soil , 2008, 313 (1/2) : 237–250.
[99] Pena R, Simon J, Rennenberg H, Polle A. Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environmental and Experimental Botany , 2013, 87 : 207–217. DOI:10.1016/j.envexpbot.2012.11.005
[100] Kawaguchi Y, Nishiuchi T, Kodama H, Nakano T, Nishimura K, Shimamura K, Yamaguchi K, Kuchitsu K, Shinshi H, Suzuki K. Fungal elicitor-induced retardation and its restoration of root growth in tobacco seedlings. Plant Growth Regulation , 2012, 66 (1) : 59–68. DOI:10.1007/s10725-011-9629-3
[101] Nibau C, Gibbs D J, Coates J C. Branching out in new directions:the control of root architecture by lateral root formation. New Phytologist , 2008, 179 (3) : 595–614. DOI:10.1111/nph.2008.179.issue-3
[102] Gruber V, Zahaf O, Diet A, de Zélicourt A, de Lorenzo L, Crespi M. Impact of the environment on root architecture in dicotyledoneous plants//de Oliveira A C, Varshney R K, eds. Root Genomics. Berlin Heidelberg:Springer, 2011:113-132.
[103] Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae:what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?. Annals of Botany , 2014, 113 (1) : 19–33.
[104] Taylor B H, Scheuring C F. A molecular marker for lateral root initiation:the RSI-1gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia. Molecular and General Genetics , 1994, 243 (2) : 148–157.
[105] Smith D L, Fedoroff N V. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. The Plant Cell , 1995, 7 (6) : 735–745. DOI:10.1105/tpc.7.6.735
[106] 江盼盼, 宋述尧, 赵春波, 张传伟. 三种丛枝菌根真菌对辣椒根系生长的影响及效应分析. 中国蔬菜 , 2010 (6) : 58–62.
[107] Uga Y, Okuno K, Yano M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany , 2011, 62 (8) : 2485–2494. DOI:10.1093/jxb/erq429
[108] Marchant A, Bhalerao R, Casimiro I, Ekl f J, Casero P J, Bennett M, Sandberg G. AUX1promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. The Plant Cell , 2002, 14 (3) : 589–597. DOI:10.1105/tpc.010354
[109] Hanlon M T, Coenen C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist , 2011, 189 (3) : 701–709. DOI:10.1111/j.1469-8137.2010.03567.x
[110] Kaldorf M, Ludwig-Müller J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum , 2000, 109 (1) : 58–67. DOI:10.1034/j.1399-3054.2000.100109.x
[111] Abeer H, Abd-Allah E F, Alqarawi A A, Alwhibi MS, Alenazi M M, Egamberdieva D, Ahmad P. Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pakistan Journal of Botany , 2015, 47 (1) : 327–340.
[112] Patten C L, Glick B R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology , 2002, 68 (8) : 3795–3801. DOI:10.1128/AEM.68.8.3795-3801.2002
[113] Jiang Y, Wu Y, Xu W S, Cheng Y H, Chen J D, Xu L, Hu F, Li H X. IAA-producing bacteria and bacterial-feeding nematodes promote Arabidopsis thaliana root growth in natural soil. European Journal of Soil Biology , 2012, 52 : 20–26. DOI:10.1016/j.ejsobi.2012.05.003
[114] Fukaki H, Tameda S, Masuda H, Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant Journal , 2002, 29 (2) : 153–168.
[115] Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T. Auxin-mediated cell cycle activation during early lateral root initiation. The Plant Cell , 2002, 14 (10) : 2339–2351. DOI:10.1105/tpc.004960
[116] Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y D, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque M P, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones J D G, Taylor C G, Schachtman D P, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett M J. The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology , 2008, 10 (8) : 946–954. DOI:10.1038/ncb1754
[117] Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Begon M, Rodriguez H, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M. Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell , 2007, 19 (12) : 3889–3900. DOI:10.1105/tpc.107.055863
[118] Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell , 2006, 18 (1) : 40–54. DOI:10.1105/tpc.105.037796
[119] Li X, Mo X R, Shou H X, Wu P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant and Cell Physiology , 2006, 47 (8) : 1112–1123. DOI:10.1093/pcp/pcj082
[120] He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal , 2005, 44 (6) : 903–916. DOI:10.1111/tpj.2005.44.issue-6
[121] Gou J Q, Strauss S H, Tsai C J, Fang K, Chen Y R, Jiang X N, Busov V B. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. The Plant Cell , 2010, 22 (3) : 623–639. DOI:10.1105/tpc.109.073239
[122] Bao F, Shen J J, Brady S R, Muday G K, Asami T, Yang Z B. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology , 2004, 134 (4) : 1624–1631. DOI:10.1104/pp.103.036897
[123] Hong J H, Seah S W, Xu J. The root of ABA action in environmental stress response. Plant Cell Reports , 2013, 32 (7) : 971–983. DOI:10.1007/s00299-013-1439-9
[124] Souček P, Klíma P, Reková A, Brzobohatý B. Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. Journal of Experimental Botany , 2007, 58 (13) : 3797–3810. DOI:10.1093/jxb/erm236
[125] Echevarría-Machado I, Escobedo-GM R M, Larqué-Saavedra A. Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid. Plant Physiology and Biochemistry , 2007, 45 (6/7) : 501–507.
[126] Koltai H, Prandi C. Strigolactones:biosynthesis, synthesis and functions in plant growth and stress responses//Tran L S P, Pal S, eds. Phytohormones:A Window to Metabolism, Signaling and Biotechnological Applications. New York:Springer, 2014:265-288.
[127] Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Molecular Biology , 2009, 69 (4) : 437–449. DOI:10.1007/s11103-008-9417-2
[128] 王彬, 张金政, 刘新, 李敏, 刘润进. 丛枝菌根真菌诱导植物信号物质研究进展. 微生物学通报 , 2010, 37 (2) : 263–268.
[129] Ortíz-Castro R, Contreras-Cornejo H A, Macías-Rodríguez L, López-Bucio J. The role of microbial signals in plant growth and development. Plant Signaling & Behavior , 2009, 4 (8) : 701–712.
[130] Herder G D, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution. Trends in Plant Science , 2010, 15 (11) : 600–607. DOI:10.1016/j.tplants.2010.08.009
[131] Karasawa T, Hodge A, Fitter A H. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant, Cell & Environment , 2012, 35 (4) : 819–828.
[132] Schroeder M S, Janos D P. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza , 2005, 15 (3) : 203–216. DOI:10.1007/s00572-004-0324-3
[133] López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo M F, Simpson J, Herrera-Estrella L. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology , 2002, 129 (1) : 244–256. DOI:10.1104/pp.010934
[134] Tian H, Drijber R A, Li X L, Miller D N, Wienhold B J. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza , 2013, 23 (6) : 507–514. DOI:10.1007/s00572-013-0491-1
[135] Mantelin S, Desbrosses G, Larcher M, Tranbarger T J, Cleyet-Marel J C, Touraine B. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta , 2006, 223 (3) : 591–603. DOI:10.1007/s00425-005-0106-y
[136] Zhang H M, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science , 1998, 279 (5349) : 407–409. DOI:10.1126/science.279.5349.407
[137] Boukcim H, Plassard C. Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. Journal of Plant Physiology , 2003, 160 (10) : 1211–1218. DOI:10.1078/0176-1617-00973
[138] Eissenstat D M, Kucharski J M, Zadworny M, Adams T S, Koide R T. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist , 2015, 208 (1) : 114–124. DOI:10.1111/nph.13451
[139] Willaume M, Pagès L. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens). Annals of Botany , 2011, 107 (4) : 653–662. DOI:10.1093/aob/mcq270
[140] Bago B, Pfeffer P E, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology , 2000, 124 (3) : 949–958. DOI:10.1104/pp.124.3.949
[141] 吴强盛, 袁芳英, 费永俊, 李莉, 黄咏明, 刘春艳. 丛枝菌根真菌对白三叶根系构型和糖含量的影响. 草业学报 , 2014, 23 (1) : 199–204.
[142] Birhane E, Kuyper T W, Sterck F J, Bongers F. Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. Forest Ecology and Management , 2010, 260 (12) : 2160–2169. DOI:10.1016/j.foreco.2010.09.010
[143] Bhushan G, Sharma S K, Kumar S, Bisht A, Das R, Singh A P. Effect of plant growth promoting rhizobacteria and fungi on growth of urd bean (Vigna mungo). Ethiopian International Journal of Multidisciplinary Research , 2015, 2 (3) : 13–18.
[144] Badar R, Nisa Z, Ibrahim S. Supplementation of P with rhizobial inoculants to improve growth of peanut plants. International Journal of Applied Research , 2015, 1 (4) : 19–23.
[145] Belimov A A, Dodd I C, Safronova V I, Shaposhnikov A I, Azarova T S, Makarova N M, Davies W J, Tikhonovich I A. Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Annals of Applied Biology , 2015, 167 (1) : 11–25. DOI:10.1111/aab.2015.167.issue-1