生态学报  2016, Vol. 36 Issue (17): 5508-5518

文章信息

康满春, 蔡永茂, 王小平, 查同刚, 朱丽平, 牛勇, 周洁, 张志强
KANG Manchun, CAI Yongmao, WANG Xiaoping, ZHA Tonggang, ZHU Liping, NIU Yong, ZHOU Jie, ZHANG Zhiqiang.
表层阻力和环境因素对杨树(Populus sp.)人工林蒸散发的控制
Control of evapotranspiration by surface resistance and environmental factors in poplar (Populus×euramericana) plantations
生态学报[J]. 2016, 36(17): 5508-5518
Acta Ecologica Sinica[J]. 2016, 36(17): 5508-5518
http://dx.doi.org/10.5846/stxb201502250381

文章历史

收稿日期: 2015-02-25
网络出版日期: 2015-12-14
表层阻力和环境因素对杨树(Populus sp.)人工林蒸散发的控制
康满春1, 蔡永茂2, 王小平3, 查同刚1, 朱丽平1, 牛勇1, 周洁4, 张志强1     
1. 北京林业大学水土保持与荒漠化防治教育部重点实验室, 北京 100083;
2. 北京市八达岭林场, 北京 102112;
3. 北京市园林绿化局, 北京 100013;
4. 北京市农业环境监测站, 北京 100029
摘要: 在水资源短缺地区大面积栽植高耗水的人工林相比于低矮农作物会加剧地区的水分短缺,因而其可持续性正受到越来越多的关注。但是,在不同地域复杂的水、能量和气候条件下的人工林蒸散发的控制机制仍不清楚。基于涡度相关(EC)系统和微气象系统对北京市大兴区杨树(Populus euramericana CV.“74/76”)人工林生态系统与大气间水分交换的连续监测,(a)分析了2006-2009年生长季中生态系统蒸散发(ET)、表层阻力(Rs)、气候阻力(Ri)和空气动力学阻力(Ra)在干湿年份间的变化动态;(b)以偏相关分析法探讨了干旱和湿润年份中不同土壤水分条件下生物因素Rs和环境因素(RiRa)对杨树人工林ET的直接控制作用。研究结果表明:在年际尺度上,干旱年份杨树人工林的日平均ET(2.23±1.30)mm/d低于湿润年份约17%,对应地,干旱年份的表层阻力(Rs :LAI)高于湿润年份(71.2 s/m)约50%,而RiRa未表现出干湿年份间的差异。在季节尺度上,季节性的干旱胁迫显著影响杨树人工林的ETRsRi的变化,水分供应(降雨量与灌溉量之和)是该尺度上影响杨树人工林ET的主导因素,其解释了ET变化的71%(P<0.01)。偏相关分析结果表明,除了在土壤水分严重胁迫(REW<0.1)情况外,其他土壤水分条件下表层阻力Rs是日尺度上控制ET变化的主导因素,其与ET呈负相关关系,二阶相关系数(SOCC)变化范围为-0.518--0.293(P<0.01),且干旱年份中RsET的控制程度高于湿润年份;环境因素中气候阻力Ri和空气动力学阻力Ra各自对ET的控制作用远小于表层阻力Rs;相对土壤含水量(REW)只在干旱年份中干旱胁迫时段(REW<0.4)直接影响ET(Pearson相关系数为0.217-0.323,P<0.01),其他情况下则是通过影响表层阻力Rs、气候阻力Ri和空气动力学阻力RaET的作用来间接影响ET的。另外,相比于偏相关分析,简单的相关性分析会对各因素对ET的控制作用造成估计偏差。
关键词: 杨树人工林     生态系统蒸散发     表层阻力     空气动力学阻力     气候阻力    
Control of evapotranspiration by surface resistance and environmental factors in poplar (Populus×euramericana) plantations
KANG Manchun1, CAI Yongmao2, WANG Xiaoping3, ZHA Tonggang1, ZHU Liping1, NIU Yong1, ZHOU Jie4, ZHANG Zhiqiang1     
1. Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
2. Badaling Forest Farm, Beijing 102112, China;
3. Beijing Municipal Bureau of Landscape and Forestry, Beijing 100013, China;
4. Beijing Municipal Station of Agro-Environmental Monitoring, Beijing 100029, China
Abstract: There is increasing concern about the sustainability of large-scale plantations in water-limited regions, with most studies indicating that the higher water use of forest plantations compared to herbaceous crops exacerbates water shortages in such areas. However, the mechanisms that control evapotranspiration in forest plantations under complex water, energy, and climatic conditions and across diverse geographical regions remain unclear. Here, we report continuous water flux data for a poplar plantation (Populus×euramericana ‘74/76’) in Daxing District, Beijing, China, collected with an eddy covariance (EC) and microclimate monitoring system. Our objectives were to a) quantify the dynamics of evapotranspiration (ET), surface resistance (Rs), and climatological resistance (Ri) over dry and wet years; b) examine the direct controlling effects of biological and environmental factors on ET by using partial correlation analysis under different soil moisture conditions over dry and wet years. On the interannual scale, average daily ET in dry years (2.23±1.30) mm/d was 17% lower than that in wet years; surface resistance (Rs:LAI) increased by 50% in dry years, but there were no significant differences in Ri and Ra between dry and wet years. At the seasonal scale, seasonal drought stress had a discernible impact on ET, Rs, and Ri of the poplar plantation, and water supply (precipitation+irrigation) caused 71% of seasonal variation in ET (P<0.01). Partial correlation analysis indicated that Rs was the main factor controlling daily ET, except under severe water stress (REW<0.1), and daily ET was negatively related to Rs (second-order correlation coefficient of -0.518 to -0.293, P<0.01). The effect of Rs on ET was stronger in dry years than in wet years, and the effects of Ri and Ra on daily ET were irregular and weaker than that of Rs. Daily ET of the poplar plantation was directly affected by relative extractable soil water (REW) only under water stress (REW<0.4) in dry years (Pearson coefficient 0.217-0.323, P<0.01), and it was indirectly influenced by REW under other soil water conditions. Compared to partial correlation analysis, correlation analysis would incorrectly evaluate the effects of Rs, Ri, and Ra on ET.
Key words: poplar plantation     evapotranspiration     surface resistance     aerodynamic resistance     climatological resistance    
1 材料与方法 1.1 研究区概况

研究开展于北京市大兴区榆垡镇大兴林场集约栽培的欧美107杨树(Populus euramericana CV. "74/76")人工林,林分均匀整齐,株行距为2 m × 2 m,75%为2002年种植,其余为1998年、2001年和2003年种植。研究站点在2006-2009年的基本情况如表 1所示,至2009年底,平均树高(H)和胸径(DBH)分别为(16.2±1.6) m和(14.1±1.6) cm (Mean±SD)。平均叶面积指数(LAI)逐年增加。林下植被稀疏,多为一年生草本植物,优势种为灰绿藜(Chenopodium glaucum Linn.),伴生有紫花苜蓿(Medicago sativa L.),黄香草木樨(Melilotus officinalis (L.) Lam.),猪毛菜(Salsola collina Pall.)和蒺藜(Tribulus terrestris L.)等。

表 1 2006-2009年研究区的环境因子和杨树人工林林分特征 Table 1 The environmental factors and stand characteristics of poplar plantation during 2006-2009
年份Year最低温Tmin/℃ 最高温Tmax/℃年均温Tmean/℃饱和水汽压差VPD/kPa土壤水分含量VWC/%降雨量P/mm蒸散发ET/mm灌溉量I/mm树高H/m胸径DBH/cm叶面积指数LAI
2006-10.629.712.5±0.71.13±0.845.5±3.74825998611.5±1.110.8±1.51.6±0.3
2007-9.829.513.0±0.61.16±0.876.6±3.6667560-13.0±1.312.2±1.82.1±0.4
2008-7.428.813.3±0.51.06±0.616.4±3.3662653-14.8±1.213.8±1.82.2±0.7
2009-10.230.512.5±0.61.17±0.926.5±3.242851119516.2±1.614.5±1.62.9±0.4
表中误差估计为标准差(SD)

研究区属暖温带亚湿润气候区,位于永定河洪积区,地势平坦,平均海拔30m,坡度<5°。年平均气温为11.6℃,极端最低气温-27.4℃,极端最高温度40.6℃;平均风速2.6 m/s,夏季主东南风方向。 多年平均降雨为556mm(1990-2009 年),其中7-9月份降雨量占全年降雨总量的60%-70% (大兴气象站,116°15'07″E,39°31'50″N,1956-2000年观测数据)。土壤为冲积性沙壤土,通透性好,保肥蓄水能力差,平均土层厚度为200cm,土壤pH值为8.25-8.39,容重1.43-1.47g/cm3。2001到2009年的平均地下水位为16.5m,年平均降幅达3.9%。

1.2 试验方法

该试验区面积大小约为1km × 1km,下垫面平坦均匀,符合涡度相关法观测要求。涡度相关和微气象观测设备架设在在试验区中心32m观测塔上,主要观测仪器包括: H2O/CO2红外气体分析仪(Li-7500;LI-COR,Inc.,Lincoln,NE,USA)和三维超声风速仪(SAT-3;Campbell Scientific,Inc.,CSI,UT,USA),安装高度为20m;净辐射仪(CNR-1;Kipp and Zonen,Delft,Netherlands)、日照强度计(LI200X-L,Li-Cor,NE)、光量子传感器(LI-190SB;Li-Cor,Inc.)安装高度均为26m; 气压计(CS105,CSI) 和翻斗式自动雨量计(TE525-L,Texas Electronics,USA)安装高度分别为21m和22.5m;空气温湿度传感器(HMP45C;Vaisala,Helsinki,Finland)在5、10、15、20m 高度处各安装1套; 土壤温度传感器(TCAV107,CSI)和土壤热通量板(HFT3,CSI)均置于地表以下5、10、20cm处;土壤水分观测仪TDR(CS616,CS,USA)位于地表以下20cm和50cm处。风速脉动、超声虚温、CO2和H2O浓度以10Hz的频率和所有气象资料均采用数据采集器(CR5000,CS,USA)自动记录。

1.3 数据处理及计算方法 1.3.1 数据处理及质量控制

涡度相关系统(EC)观测获取的通量数据使用EC-processor 2.3[29]程序进行处理。该程序能够对通量数据进行剔除、三维坐标旋转[30-31]、WPL校正[32-33]、以及质量控制[34-35]和评价。对缺失的数据运用平均日变化(MDV)[36]法进行插补,当数据缺失时段大于2h且小于7d时使用前后7d的滑动平均进行插补,大于7d时则不进行插补。

基于国家标准关于气候干旱的界定[37],年降雨量低于多年平均年降雨量的85%即为干旱年份,4年中2007和2008年为湿润年,2006和2009年为干旱年;因为生长季中水分蒸发的驱动力(如太阳辐射、温度)和植物的生理响应更强烈,所以本文选用生长季(约从第100-300天)为研究时段;由于清晨和傍晚时太阳辐射、饱和水汽压差、冠层蒸腾的值都非常低,导致计算的表层阻力相对误差大,而且此时的阻力参数对积分通量影响很小但却对通量平均值有着重大的影响[38-40],因此采用中午时段(北京时间10:00-15:00)各阻力参数的均值来评价其日变化情况。

1.3.2 生态系统生理物理特性参数的计算

运用涡度相关系统观测的潜热通量(LE)计算整个生态系统的蒸散发(ET)。通过Penman-Monteith方程来推导中午时段(北京时间10:00-15:00)生态系统的表层阻力(Rs)[41]:

    (1)

其中

    (2)

式中,Rs为水汽传输的表层阻力(s/m),Ri气候阻力(s/m),ρ为空气密度 (kg/m3),cp为空气比热1005 J kg-1 K-1,δe是饱和水汽压差(Pa),Δ描述饱和水汽压差随温度变化的斜率(Pa/K),γ为干湿球常数(≈67 Pa/K),A表示有效能(Rn-G),LE为涡度相关技术观测的潜热通量(W/m2),β为波文比(=H/LE);Ra 为冠层到观测高度大气层的空气动力学阻力(s/m),根据公式(3)[42-43]进行计算:

    (3)

式中,ra,m动量传输的空气动力学阻力(s/m),rb为剩余阻力(s/m),μ为观测高度的平均风速(m/s),μ*为摩擦风速(m/s)。

相对土壤含水量是衡量生态系统土壤中可利用水分的良好指标[5],可由公式(4)计算

    (4)

式中,VWC 为50cm土壤体积含水量(%),VWCmin和VWCmax分别为研究中土壤的凋萎湿度和田间持水量(%)。根据Granier 等人[44]的研究,当REW<0.4时,生态系统受到土壤水分胁迫的影响,当REW<0.1时,生态系统将受到严重的水分胁迫[45]

1.3.3 能量闭合

能量闭合程度是检验涡度相关技术观测数据质量的有效手段之一[46]。能量闭合比率由公式(5)[47]计算:

    (5)

式中,EBR为能量平衡比率,Rn,G,H,LE分别为净辐射、土壤热通量、显热通量和潜热通量(W/m2)。

本研究中基于半小时和日总量能量通量数据的4年平均能量平衡比率(EBR)分别为0.85和0.87,与中国通量网(ChinaFlux)8个站点的均值(0.83)[48]和通量网(FLUXNET)173个站点的均值(0.84)[49]一致。但是涡度相关技术的观测中通常是不闭合的,除了一般常见的影响能量闭合的因素[48, 50-52],本站点下垫面上的管理活动如灌溉、除草以及局部砍伐也有可能影响闭合程度。总体来说,本站点的能量闭合程度和其他通量网站点的一致,说明本文中涡度相关法观测的数据是可靠的。

1.4 分析方法

数据统计和分析、作图采用软件SPSS 20.0和Excel 2013;偏相关分析用来分析3个阻力参数(表层阻力、气候阻力和空气动力学阻力)各自对ET的实际控制作用,即分别以其中两个阻力参数作为控制变量来分析第3个阻力参数与ET的相关性。

2 结果与分析 2.1 相对土壤含水量(REW)和降雨的变化特征

研究区降雨和相对土壤含水量的变化如图 1所示。相比于多年平均降雨量556mm(1990-2009),干旱年2006和2009的年降雨总量分别低于其74mm和159mm,灌溉量分别为86mm和195mm;而湿润年2007和2008年的年降雨量则高于多年均值超过100mm(表 1)。生长季的降雨量占全年降雨的90%以上,除了2008年的降雨分布较均匀外,其他3a降雨则相对集中在生长季中期,如2007年生长季前期(DOY:100-180)只有一场降雨(>50mm),而2006年和2009年生长季后期(DOY:240-300)降雨稀少。相对土壤含水量(REW)的季节变化响应于降雨量的变化,只有在降雨充沛时REW才大于0.4;基于REW划分的生长季干旱胁迫(REW<0.4)和非胁迫阶段(0.4<REW<1.0)如表 2中所示,在2006和2009年的生长季末期以及2007年和2009年的生长季初期,生态系统存在较长时段的干旱胁迫,甚至出现严重干旱胁迫(REW<0.1),而在2008年生长季中则不存在严重干旱胁迫。

图 1 2006-2009年生长季日降雨量和相对土壤含水量的季节变化 Fig. 1 The seasonal variation of daily precipitation (P) and relative extractable water (REW) during growing season in 2006-2009

表 2 2006-2009年杨树人工林在生长季中不同时段的水分供应量(降雨+灌溉)、累积蒸散发以及平均表层阻力、气候阻力和空气动力学阻力 Table 2 The amount of water supply (P+I),cumulative evapotranspiration (ET),average surface resistance (Rs),climatological resistance (Ri) and aerodynamic resistance (Ra) in poplar plantation during different periods of growing season,2006-2009
年份Year时段Periods水分供应Water supply/mm表层阻力*Rs /(s/m)气候阻力*Ri /(s/m)空气动力学阻力*Ra/(s/m)累积蒸散发Cumulative ET/mm
2006100-16376.2+56418.7(528.7)87.8(30.2)20.0(6.3)97
164-192d127.8184.0(94.7)94.9(45.2)23.8(5.1)91.87
193-230219.650.4(29.9)51.5(16.4)27.8(8.6)125.38
231-300d43178.5(68.8)77.4(27.5)25.6(6.8)112.72
100-143d61.8426.9(148.8)96.1(29.4)18.1(5.4)73.61
2007151-200d146.8314.1(225.6)91.7(42.8)25.3(7.1)131.48
200-300396.874.1(27.3)61.1(22.7)30.4(9.2)284.29
100-11753.4206.9(102.0)60.7(22.9)13.6(4.1)25.43
118-155d15.6130.8(48.6)81.1(32.3)14.7(4.2)121.14
156-188212.770.2(33.4)56.1(20.6)19.3(5.9)115.92
2008189-212d2659.3(27.1)67.4(41.1)27.8(6.8)105.41
213-239173.461.5(23.7)55.8(14.3)19.3(5.2)108.41
240-251d19.288.7(34.6)60.4(15.3)18.0(4.1)37.65
252-300116.272.1(17.8)57.3(28.9)18.4(4.4)107.81
100-158d37.6+52298.9(150.8)84.2(39.3)18.2(3.8)109.56
2009165-186d1.2360.5(139.8)137.4(43.8)21.2(5.9)58.21
187-235265+3261.2(30.9)53.0(22.8)27.4(6.6)178.63
236-300d20.4+20208.3(194.3)72.3(26.5)26.9(10.7)108.42
2006生长季466+86231.4(338.3)a77.9(33.6)a24.0(7.4)A431
2007Growing season630192.2(190.7)a75.4(34.0)a26.9(9.3)B506.1
2008630118.1(115.3)b68.3(44.9)a18.5(6.3)C629.6
2009400+195248.9(273.3)a77.1(39.1)a23.8(8.5)A477.2
干旱年(2006,2009)Dry year-240.3(306.9)A77.5(36.5)a23.9(8.0)a454.1
湿润年(2007,2008)Wet year-153.1(159.7)B71.6(40.3)a22.5(8.9)a567.85
* 表中数据为均值(标准差);d表示水分胁迫阶段; a、b、c表示显著性为0.05,A、B、C表示显著性为0.01
2.2 杨树人工林蒸散发(ET)和生理物理参数的变化

杨树人工林蒸散发(ET)的季节变化如图 2所示。2006-2009年生长季的最大日蒸散发出现在7、8月份,分别为:5.63、6.31、6.15 mm/d和6.52 mm/d;累积蒸散发量分别为431、506、629mm和477mm(表 2),除2008年外,其他年份的都要小于同期的水分供应量(降雨与灌溉之和);干旱年份的日平均蒸散发(2.23±1.30)mm/d要显著低于湿润年份的(2.67±1.47) mm/d,P < 0.001,并且干旱年份中干旱胁迫时段的日平均蒸散发要显著低于非胁迫时段的,分别为(2.08±1.08) mm/d和(2.94±1.30) mm/d(P<0.001)。在季节尺度上,各时段的蒸散发量与水分供应量表现出显著的相关性(图 3),水分供应解释了约71%的蒸散发变化,但在干旱和湿润年份表现出不同类型的响应关系。相比于其他研究,本研究中杨树在干旱年份的日平均蒸散发量显著低于内蒙古浑善达克地区杨树人工林的(2.58mm/d[19],P < 0.01),而湿润年份的日蒸散发则与其无显著差异,这说明本研究区的杨树在同等干旱情况下,更容易受到干旱胁迫,这可能与所在区的水分供应有关,如降雨及其分布。

图 2 2006-2009生长季杨树人工林日蒸散发(ET)和中午时段生理物理参数表层阻力(Rs)、气候阻力(Ri)和空气动力学阻力(Ra) Fig. 2 The seasonal variation of daily evapotranspiration (ET) and midday biophysical parameters: surface resistance (Rs),climatological resistance (Ri) and aerodynamic resistance (Ra) of poplar plantation ecosystem across growing season during 2006-2009

图 3 干旱和湿润年份中各时段的蒸散发总量和水分供应量的关系 Fig. 3 esponse of the total evapotranspiration amount to the total water supply during different periods in dry and wet year

生长季时段表层阻力(Rs)的季节性变化与其他研究中落叶林的Rs季节性变化特点相似[40, 53],在生长季初期和末期Rs值较大而且变化剧烈,在中期则比较小且平稳(图 2)。2006-2009年生长季中Rs的7d滑动平均值的变化范围分别为:34.3-1569.3 s/m,44.9-1110.9 s/m,29.7-258.2 s/m,41.1-1186.8 s/m,其中2008的叶面积指数(LAI)标准化后的Rs(即RsLAI)为45.6 s/m,显著低于其他年份(100.3 s/m,P<0.01),而干旱年份的平均RsLAI(106.8 s/m)约为湿润年份Rs的1.5倍;Rs的季节变化则响应于干旱胁迫,如2006、2007和2009年胁迫时段的Rs要远高于非胁迫时段的(表 2),这与Tchebakova等人[54]的研究一致。本研究中干旱年份杨树的RsLAI要显著高于Wilson等人[27]研究中的杨树(58.6 s/m)以及Blanken等人[55]研究中的北方白杨(51.8 s/m)。总体上气候阻力(Ri)在生长季表现出双峰趋势,分别在6月份和10月份(图 2);4年中生长季节平均Ri为68.3 s/m,均值范围为68.3-77.9 s/m,没有显著的年际差异和干湿年份间的差异(P > 0.05),但水分胁迫时段Ri要略高于非胁迫时段的(表 2)。Ri的大小体现了不同地域内大气环境对水分需求程度的差异;相比之下,本研究所在地区的Ri要远高于Wilson等人[27]研究中的各森林站点的Ri(t=5.91,df=741,P<0.001),但要低于Li等人[56]研究中处于干热气候下葡萄园的Ri值(t=-29.87,df=741, P<0.001)。在一定程度上,由于本研究所在地区大气对水分的更高的需求和水分供应的短缺,所以导致杨树Rs要显著高于其他研究。空气动力学阻力(Ra)最大值出现在7月,除了2009年在8月;2006-2009年各生长季的平均Ra存在显著差异(P<0.01),但是干湿年份间的Ra并无显著差异(表 2)。

3 讨论 3.1 相对土壤含水量(REW)对杨树人工林蒸散发(ET)的影响[ZK)]

ET与REW的相关性分析结果(表 3)表明,在日尺度上,杨树人工林只有在干旱年份中REW<0.4的情况下其ET和REW才显著相关(Pearson相关系数> 0.217,P<0.01),且土壤水分胁迫越严重,REW对ET的影响越大;在其他情况下,ET与REW不存在显著相关关系(P > 0.05),REW是通过影响其他因素间接地影响ET的。这说明由降雨多寡导致的气候湿润或干旱会影响到土壤水分对杨树蒸散发的作用。研究表明土壤水分胁迫对ET有着一定的限制作用,但会因为时滞和较窄的响应范围而有时并不明显,只在达到一定程度时才显现出来[57]。因此,REW只在气候干旱且存在土壤水分胁迫的情况下对杨树人工林ET有一定的影响(< 35%),而且会随着水分胁迫程度的增加而增加。

表 3 不同土壤水分条件下干湿年份中蒸散发和相对土壤含水量、表层阻力、气候阻力和空气动力学的相关系数 Table 3 The correlation coefficient,including Pearson correlation (P) and the second order correlation coefficient (SOCC),between evapotranspiration (ET) and relative extractable water (REW),surface resistance (Rs),climatological resistance (Ri) and aerodynamic resistance (Ra) at different water condition in dry and wet year,the value in table represents coefficient (significance)
土壤水分状况Soil water condition年份Year蒸散发(ET)-相对土壤含水量(REW)蒸散发(ET)-表层阻力(Rs)蒸散发(ET)-气候阻力(Ri)蒸散发(ET)-空气动力学阻力(Ra)
P(sig.)P(sig.)SOCC(sig.)P(sig.)SOCC(sig.)P(sig.)SOCC(sig.)
REW<0.1干旱年0.323(0.002)0.163(0.187)0.09(0.478)0.213(0.084)0.165(0.19)-0.48(0.001)-0.471(0.001)
湿润年-0.258(0.223)0.402(0.063)0.634(0.003)0.248(0.266)-0.552(0.012)-0.702(0.001)-0.543(0.013)
0.1<REW<0.4干旱年0.217(0.006)-0.394(0.001)-0.445(0.001)0.023(0.786)0.11(0.192)-0.069(0.413)-0.02(0.018)
湿润年-0.1(0.199)-0.386(0.001)-0.293(0.001)-0.304(0.001)0.191(0.017)0.122(0.127)0.108(0.179)
0.4<REW<1.0干旱年0.048(0.58)-0.527(0.001)-0.518(0.001)-0.179(0.04)-0.165(0.061)0.156(0.074)0.033(0.71)
湿润年0.004(0.958)-0.37(0.001)-0.389(0.001)-0.163(0.018)0.067(0.337)-0.073(0.296)-0.217(0.002)
相关系数(显著性程度),包括Pearson相关系数和偏相关系数SOCC
3.2 不同REW条件下RsRi

RaET的控制森林生态系统的蒸散发受生物和环境因素的共同影响[21-22],表层阻力Rs可以描述生物因素对ET的控制[28],而环境因素对ET的控制可以借助气候阻力Ri和动气动力学Ra来评价[27],但各影响因素间存在相互作用,因此为了进一步分清生物和环境因子各自对ET的实际控制作用,本文采用偏相关分析,结果如表 3所示。

ETRsRiRa的偏相关系数表明表层阻力Rs是控制ET的主导因素,这与其他研究结论一致[26, 58],且RsET的影响受土壤水分状况的影响;而RiRa只有在特定的情况下对ET有影响;其中在湿润年份中REW<0.1时ET与三者都具有十分显著的相关性。表层阻力RsET的关系表现为:除了在严重水分胁迫条件(REW<0.1)下以外,ETRs均呈负相关关系(SOCC变化范围:-0.293--0.518,P<0.001),ET随着Rs的增大而减小[26];而且无论在干旱还是湿润年份,RsET的相关性在REW > 0.4时要高于0.1<REW<0.4时,说明随着土壤水分状况的改善,RsET的控制作用会增强,这是由于水分胁迫情况下的Rs要远大于无胁迫时的(表 2),而且随着水分胁迫程度增加Rs变幅更大[59],对应的ETRs很大时变化较小,因而两者的相关性相对较弱;在同等的REW条件下,干旱年份中RsET的控制作用要高于湿润年份时的,可能与干旱年份中较大的表层阻力Rs有关(表 2),因为干旱与湿润年份间空气动力学阻力Ra并无差异,因而在干旱年份中,由于较大的表层阻力Rs导致植被冠层和大气耦合程度更大[60],使得RsET的限制程度更强[61]。而气候阻力Ri在湿润年份中存在土壤水分胁迫时(REW<0.4)对ET有一定的控制作用,但在不同水分胁迫程度下其作用有差异;空气动力学阻力Ra则只在REW <0.1时和湿润年份中REW > 0.4时才对ET有显著影响(P<0.05),且均为负相关。另外,相对于偏相关分析,通过简单的相关性分析来评价不同因子对ET的控制作用,都存在或高或低的估计偏差,甚至得出完全相反的分析结果。

4 结论

杨树人工林生态系统生长季的蒸散发(ET)和表层阻力(Rs)响应于气候干旱而表现出显著的干湿年份差异,其中干旱年份的日平均ET低于湿润年份约17%,对应地,干旱年份的表层阻力(RsLAI)高于湿润年份约50%,而气候阻力(Ri)和空气动力学阻力(Ra)的年际变化并未表现出显著的干湿年份差异。在季节尺度上,季节性干旱对该生态系统的蒸散发(ET)、表层阻力(Rs)、气候阻力(Ri)有着显著的影响,水分供应(降雨量与灌溉量之和)是该尺度上影响ET变化的主要因素,两者的相关程度约为71%;在日尺度上,干湿年份中不同土壤水分条件下RsRiRa三个因素对ET的影响程度有所差异;除了REW<0.1情况外,生物因素Rs是控制ET变化的主导因素,两者间均呈现负相关关系,RsET变化的解释程度为29.3%-51.8%,且干旱年份中RsET的控制程度高于湿润年份。土壤水分只在干旱年份中干旱胁迫时段(REW<0.4)对ET有直接影响;不同土壤水分条件下气候因子Ri和空气动力学阻力Ra对杨树人工林ET的控制作用小于表层阻力Rs的且并未表现一致性。另外,简单的相关性分析不能准确评价生物和环境因子对ET的控制作用,存在估计偏差,甚至得出完全相反的分析结果。

参考文献
[1] Ding Y H, Ren G Y, Zhao Z C, Xu Y, Luo Y, Li Q P, Zhang J. Detection, causes and projection of climate change over China:An overview of recent progress. Advances in Atmospheric Sciences , 2007, 24 (6) : 954–971. DOI:10.1007/s00376-007-0954-4
[2] Qiu G Y, Yin J, Geng S. Impact of climate and land-use changes on water security for agriculture in Northern China. Journal of Integrative Agriculture , 2012, 11 (1) : 144–150. DOI:10.1016/S1671-2927(12)60792-5
[3] Wang E L, Yu Q, Wu D R, Xia J. Climate, agricultural production and hydrological balance in the North China Plain. International Journal of Climatology , 2008, 28 (14) : 1959–1970. DOI:10.1002/joc.v28:14
[4] Martín-García J, Jactel H, Diez J J. Patterns and monitoring of Sesia apiformis infestations in poplar plantations at different spatial scales. Journal of Applied Entomology , 2011, 135 (5) : 382–392. DOI:10.1111/jen.2011.135.issue-5
[5] Zhou J, Zhang Z Q, Sun G, Fang X R, Zha T G, McNulty S, Chen J Q, Jin Y, Noormets A. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. Forest Ecology and Management , 2013, 300 : 33–42. DOI:10.1016/j.foreco.2013.01.007
[6] Gielen B, Ceulemans R. The likely impact of rising atmospheric CO2 on natural and managed Populus:a literature review. Environmental Pollution , 2001, 115 (3) : 335–358. DOI:10.1016/S0269-7491(01)00226-3
[7] Wilske B, Lu N, Wei L, Chen S P, Zha T G, Liu C F, Xu W T, Noormets A, Huang J H, Wei Y F, Chen J, Zhang Z Q, Ni J, Sun G, Guo K, McNulty S, John R, Han X G, Lin G H, Chen J Q. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management , 2009, 90 (8) : 2762–2770. DOI:10.1016/j.jenvman.2009.03.004
[8] Zhang J B, Shangguan T, Meng Z Q. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological Research , 2011, 26 (1) : 153–161. DOI:10.1007/s11284-010-0772-5
[9] 方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报 , 2008, 19 (10) : 2308–2316.
[10] Sun G, Alstad K, Chen J Q, Chen S P, Ford C R, Lin G H, Liu C F, Lu N, McNulty S G, Miao H X, Noormets A, Vose J M, Wilske B, Zeppel M, Zhang Y, Zhang Z Q. A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology , 2011, 4 (2) : 245–255. DOI:10.1002/eco.194
[11] Gao Y, Zhu X J, Yu G R, He N P, Wang Q F, Tian J. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology , 2014, 195-196 : 32–37. DOI:10.1016/j.agrformet.2014.04.010
[12] 黄辉, 孟平, 张劲松, 高峻, 贾长荣. 华北低丘山地人工林蒸散的季节变化及环境影响要素. 生态学报 , 2011, 31 (13) : 3569–3580.
[13] Hari P, Mäkelä A. Annual pattern of photosynthesis in Scots pine in the boreal zone. Tree Physiology , 2003, 23 (3) : 145–155. DOI:10.1093/treephys/23.3.145
[14] 张燕. 北京地区杨树人工林能量平衡和水量平衡[D]. 北京:北京林业大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10022-2010128613.htm
[15] Guidi W, Bonari E, Bertolacci M. Water consumption of poplar and willow short rotation forestry used as vegetation filter:preliminary results//ICID 21st European Regional Conference 2005. Frankfurt (Oder) and Slubice-Germany and Poland, 2005.
[16] Lombard K, O'Neill M, Smeal D, Arnold R, Mexal J. Hybrid poplar establishment under harsh environmental and edaphic conditions//AFTA 2005 Conference Proceedings, 2005. https://www.researchgate.net/profile/John_Mexal/publication/268011437_HYBRID_POPLAR_ESTABLISHMENT_UNDER_HARSH_ENVIRONMENTAL_AND_EDAPHIC_CONDITIONS/links/546b8cd30cf2397f7831c3a9.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
[17] Verstraeten W W, Muys B, Feyen J, Veroustraete F, Minnaert M, Meiresonne L, de Schrijver A. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE. Hydrology and Earth System Sciences , 2005, 9 (3) : 225–241. DOI:10.5194/hess-9-225-2005
[18] LaMalfa E M, Ryle R. Differential snowpack accumulation and water dynamics in aspen and conifer communities:Implications for water yield and ecosystem function. Ecosystems , 2008, 11 (4) : 569–581. DOI:10.1007/s10021-008-9143-2
[19] 朱仲元. 干旱半干旱地区天然植被蒸散发模型与植被需水量研究[D]. 内蒙古:内蒙古农业大学, 2005. http://cdmd.cnki.com.cn/article/cdmd-10129-2005091537.htm
[20] 叶兵. 北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究[D]. 北京:中国林业科学研究院, 2007. http://www.oalib.com/references/19540585
[21] Stoy P C, Katul G G, Siqueira M B S, Juang J Y, Novick K A, McCarthy H R, Oishi A C, Uebelherr J M, Kim H S, Oren R. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology , 2006, 12 (11) : 2115–2135. DOI:10.1111/gcb.2006.12.issue-11
[22] Zhang Y Q, Kang S Z, Ward E J, Ding R S, Zhang X, Zheng R. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China:Dynamics and influential factors. Agricultural Water Management , 2011, 98 (8) : 1207–1214. DOI:10.1016/j.agwat.2011.03.006
[23] 杨建伟, 梁宗锁, 韩蕊莲. 黄土高原常用造林树种水分利用特征. 生态学报 , 2006, 26 (2) : 558–565.
[24] 陈安强. 杨树优良无性系生长规律与蒸腾耗水特性研究[D]. 山东:山东农业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10434-2009234550.htm
[25] 张栋, 刘桂华, 项艳, 闫年, 赵德斌, 赵海燕. 3个杨树无性系蒸腾耗水特性研究. 安徽农业大学学报 , 2011, 38 (5) : 713–717.
[26] Zha T S, Li C Y, Kellomäki S, Peltola H, Wang K Y, Zhang Y Q. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors. Plos One , 2013, 8 (7) : e69027. DOI:10.1371/journal.pone.0069027
[27] Wilson K B, Baldocchi D D, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law B E, Lindroth A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S, Vesala T, Wofsy S. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research , 2002, 38 (12) : 30–1.
[28] Zha T S, Barr A G, van der Kamp G, Black T A, McCaughey J H, Flanagan L B. Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agricultural and Forest Meteorology , 2010, 150 (11) : 1476–1484. DOI:10.1016/j.agrformet.2010.08.003
[29] Noormets A, Zhou R, Chen J, Billesbach D. EC_Processor page, 2014. http://www4.ncsu.edu/-anoorme/ECP/index.html.
[30] Paw U K T, Baldocchi D D, Meyers T P, Wilson K B. Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology , 2000, 97 (3) : 487–511. DOI:10.1023/A:1002786702909
[31] Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology , 2001, 99 (1) : 127–150. DOI:10.1023/A:1018966204465
[32] Burba G G, McDermitt D K, Grelle A, Anderson D J, Xu L K. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biology , 2008, 14 (8) : 1854–1876. DOI:10.1111/gcb.2008.14.issue-8
[33] Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society , 1980, 106 (447) : 85–100. DOI:10.1002/(ISSN)1477-870X
[34] Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology , 1996, 78 (1/2) : 83–105.
[35] Goulden M L, Munger J W, Fan S M, Daube B C, Wofsy S C. Measurements of carbon sequestration by long-term eddy covariance:methods and a critical evaluation of accuracy. Global Change Biology , 1996, 2 (3) : 169–182. DOI:10.1111/gcb.1996.2.issue-3
[36] Falge E, Baldocchi D, Olson R, Anthoni P, Anbinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N O, Katul G, Keronen P, Kowalski A, Lai C T, Law B E, Meyers T, Moncrieff J, Moors E, Munger J W, Pilegaard K, Rannik V, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology , 2001, 107 (1) : 43–69. DOI:10.1016/S0168-1923(00)00225-2
[37] 中国气象局. GB/T 20481-2006气象干旱等级. 北京: 中国标准出版社, 2006.
[38] Lei H M, Yang D W. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology , 2010, 150 (4) : 581–589. DOI:10.1016/j.agrformet.2010.01.022
[39] Wilson K B, Baldocchi D D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology , 2000, 100 (1) : 1–18. DOI:10.1016/S0168-1923(99)00088-X
[40] 李峥, 牛丽华, 袁凤辉, 关德新, 王安志, 金昌杰, 吴家兵. 辽西农林复合系统中杨树冠层导度特征. 应用生态学报 , 2012, 53 (11) : 2975–2982.
[41] Kumagai T, Saitoh T M, Sato Y, Morooka T, Manfroi O J, Kuraji K, Suzukai M. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo:dry spell effects. Journal of Hydrology , 2004, 287 (1/4) : 237–251.
[42] Hossen M S, Mano M, Miyata A, Baten M A, Hiyama T. Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrological Processes , 2012, 26 (9) : 1311–1320. DOI:10.1002/hyp.v26.9
[43] Migliavacca M, Meroni M, Manca G, Matteucci G, Montagnani L, Grassi G, Zenone T, Teobaldelli M, Goded I, Colombo R, Seufert G. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agricultural and Forest Meteorology , 2009, 149 (9) : 1460–1476. DOI:10.1016/j.agrformet.2009.04.003
[44] Granier A, Reichstein M, Bréda N, Janssens I A, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Kostner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003. Agricultural and Forest Meteorology , 2007, 143 (1/2) : 123–145.
[45] 周洁, 张志强, 孙阁, 方显瑞, 查同刚, 张燕, 王小平, 陈俊崎, 陈吉泉. 不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应. 生态学报 , 2013, 33 (5) : 1465–1474.
[46] Chen S P, Chen J Q, Lin G H, Zhang W L, Miao H X, Wei L, Huang J H, Han X G. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology , 2009, 149 (11) : 1800–1809. DOI:10.1016/j.agrformet.2009.06.009
[47] Gu J J, Smith E A, Merritt J D. Testing energy balance closure with GOES-retrieved net radiation and in situ measured eddy correlation fluxes in BOREAS. Journal of Geophysical Research:Atmospheres (1984-2012) , 1999, 104 (D22) : 27881–27893. DOI:10.1029/1999JD900390
[48] Li Z Q, Yu G R, Wen X F, Zhang L M, Ren C Y, Fu Y L. Energy balance closure at ChinaFLUX sites. Science China Earth Sciences , 2005, 48 (S1) : 51–62.
[49] Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B E, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology , 2002, 113 (1/4) : 223–243.
[50] Hernandez-Ramirez G, Hatfield J L, Prueger J H, Sauer T J. Energy balance and turbulent flux partitioning in a corn-soybean rotation in the Midwestern US. Theoretical and Applied Climatology , 2010, 100 (1/2) : 79–92.
[51] Nakai T, Van Der Molen M K, Gash J H C, Kodama Y. Correction of sonic anemometer angle of attack errors. Agricultural and Forest Meteorology , 2006, 136 (1/2) : 19–30.
[52] Stoy P C, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain M A, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale, D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A. A data-driven analysis of energy balance closure across FLUXNET research sites:The role of landscape scale heterogeneity. Agricultural and Forest Meteorology , 2013, 171-172 : 137–152. DOI:10.1016/j.agrformet.2012.11.004
[53] Cabral O M R, Rocha H R, Gash J H C, Ligo M A V, Freitas H C, Tatsch J D. The energy and water balance of a Eucalyptus plantation in southeast Brazil. Journal of Hydrology , 2010, 388 (3/4) : 208–216.
[54] Tchebakova N M, Kolle O, Zolotoukhine D, Arneth A, Styles J M, Vygodskaya N N, Schuluze E D, Shibistova O, Lloyd J. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus B , 2002, 54 (5) : 537–551. DOI:10.1034/j.1600-0889.2002.01337.x
[55] Blanken P D, Black T A, Yang P C, Neumann H H, Nesic Z, Staebler R, den Hartog G, Novak M D, Lee X. Energy balance and canopy conductance of a boreal aspen forest:Partitioning overstory and understory components. Journal of Geophysical Research:Atmospheres , 1997, 102 (D24) : 28915–28927. DOI:10.1029/97JD00193
[56] Li S, Tong L, Li F S, Zhang L, Zhang B Z, Kang S Z. Variability in energy partitioning and resistance parameters for a vineyard in northwest China. Agricultural Water Management , 2009, 96 (6) : 955–962. DOI:10.1016/j.agwat.2009.01.006
[57] 陈立欣. 树木/林分蒸腾环境响应及其生理控制[D]. 北京:北京林业大学, 2013. http://cdmd.cnki.com.cn/article/cdmd-10022-1013214020.htm
[58] Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology , 2007, 337 (3/4) : 269–283.
[59] 金永焕, 李敦求, 姜好相. 不同土壤水分对赤松光合作用与水分利用效率的影响研究. 中国生态农业学报 , 2007, 15 (1) : 71–74.
[60] Zhu G F, Lu L, Su Y H, Wang X F, Cui X, Ma J Z, He J H, Zhang K, Li C B. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrological Processes , 2014, 28 (19) : 5093–5104. DOI:10.1002/hyp.9995
[61] 黄辉, 孟平, 张劲松, 郑宁, 贾长荣. 华北低丘山地人工林蒸散的控制因子. 生态学报 , 2014, 34 (3) : 667–673.