生态学报  2016, Vol. 36 Issue (15): 4762-4768

文章信息

李豫婷, 林树基, 韩雪, 冯永祥, 林而达, 李迎春, 陈曦
LI Yuting, LAM Shu, HAN Xue, FENG Yongxiang, LIN Erda, LI Yingchun, CHEN Xi.
CO2浓度升高与硝化抑制剂对冬小麦田间N2O排放量的影响
Effects of elevated CO2 and nitrification inhibitors on N2O emissions from a winter wheat cropping system
生态学报[J]. 2016, 36(15): 4762-4768
Acta Ecologica Sinica[J]. 2016, 36(15): 4762-4768
http://dx.doi.org/10.5846/stxb201412292597

文章历史

收稿日期: 2014-12-29
网络出版日期: 2015-11-16
CO2浓度升高与硝化抑制剂对冬小麦田间N2O排放量的影响
李豫婷1,2, 林树基3, 韩雪1, 冯永祥1,2, 林而达1, 李迎春1, 陈曦4     
1. 中国农业科学院农业环境与可持续发展研究所, 农业部农业环境重点实验室, 北京 100081;
2. 黑龙江八一农垦大学农学院农学院, 大庆 163000;
3. Crop and Soil Science Section, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010 Australia;
4. 北京市平谷区气象局, 北京 101200
摘要: 以冬小麦中麦175为供试品种,利用农田开放式CO2浓度增高(FACE)系统,研究未来大气高CO2浓度对冬小麦田间N2O排放的影响,以及施用硝化抑制剂(2-氯-6-三氯甲基吡啶)是否可以起到抑制冬小麦田间N2O的排放量升高的潜能。试验结果表明:CO2浓度升高显著提高冬小麦田间N2O的排放增幅达到67.6%,追肥灌溉后小麦田N2O排放量较大,随着冬小麦生育进程的推进N2O的排放量逐渐减少,硝化抑制剂对中麦175田间N2O排放量的影响并不明显。因此,在未来高CO2浓度环境条件下,可以通过采取相应的耕作制度和栽培技术措施等来降低冬小麦田N2O的排放量。试验结果对冬小麦田间是否选择施用2-氯-6-三氯甲基吡啶来控制N2O的排放起到一定的参考作用。
关键词: FACE(开放式CO2浓度增高系统)     冬小麦     硝化抑制剂     N2O排放量    
Effects of elevated CO2 and nitrification inhibitors on N2O emissions from a winter wheat cropping system
LI Yuting1,2, LAM Shu3, HAN Xue1, FENG Yongxiang1,2, LIN Erda1, LI Yingchun1, CHEN Xi4     
1. Institute of Environment and Sustainable Development in Agriculture, Key Laboratory of Agro-environment and Climate Change of Agriculture Ministry, Chinese Academy of Agricultural Sciences, Beijing 100081;
2. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163000, China;
3. Crop and Soil Sciences Section, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia;
4. Pinggu meteorological bureau, Beijing 101200, China
Abstract: Nitrous oxide (N2O) is one of the most important greenhouse gases emitted from the fertilized agricultural soils. This agricultural greenhouse gas is produced through nitrification and denitrification processes. The possible factors affecting N2O emissions have been widely studied, including the timing and rate of irrigation and nitrogenous fertilizer application, and environmental soil conditions such as temperature, moisture content, and microbial activity. The response of N2O emissions to the application of nitrification inhibitors has also been investigated in the last few decades, particularly in the context of climate change mitigation. More recent studies have examined the effects of elevated CO2 on N2O in various agricultural contexts, including a variety of cropping systems. However, there are currently no available reports on the potential effects of the interaction between elevated CO2 and the nitrification inhibitors on N2O emissions from a winter wheat field under open-air conditions. We therefore measured N2O flux using closed chambers at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in northern China. The target atmospheric CO2 concentrations were 400 μL/L (ambient) and 550 μL/L(elevated) for treatments with and without the application of a nitrification inhibitor (Nitrapyrin). Nitrapyrin was applied twice (24% N-serve, 10 mg/kg soil) during the growing season-on day 1 and day 30 after fertilizer application. Measurements (0, 20, and 40 min after chamber closure) were taken from the start of the elongation stage until harvest (Triticum aestivum L. cv. Zhongmai 175). Measurements were taken daily for a week after each nitrapyrin application, and on a weekly basis from the application of nitrapyrin until harvest. The results showed that: 1) from the elongation stage to harvest, the elevated atmospheric CO2 concentration increased N2O emissions from the soil by 67.6% overall. Within a week of the first and second applications of the nitrification inhibitor, N2O flux was increased by 58.1% and 78.7%, respectively, under conditions of elevated CO2. 2) Nitrapyrin had no significant effect on N2O emissions from the winter wheat field. The effect of the interaction between CO2 concentration and nitrapyrin application on N2O emissions was not significant. 3) N2O flux was the highest after fertilization and irrigation, before declining gradually over the course of the season. In our study, elevated CO2 stimulated N2O emissions, possibly as a result of higher carbon (C) input into the soil and C substrate availability for denitrifiers. However, the increase in emissions was not mitigated by the application of nitrapyrin. The ineffectiveness of nitrapyrin observed in our study may be due to (i) the fact that the background ammonium (NH4+) content in the soil was high at our study site, and/or (ii) the adsorption of the active ingredient of the inhibitor into the soil organic matter may be strong enough to reduce contact between the ingredient and NH4+. Further research is required to substantiate these findings. Our results indicate that under future atmospheric CO2 concentrations, it will be necessary to adopt appropriate agricultural management and cultivation practices in order to reduce N2O emissions from winter wheat fields. This study provides implications for the use of nitrapyrin in the mitigation of N2O emissions from winter wheat fields.
Key words: free-air carbon dioxide enrichment (FACE)     winter wheat     nitrapyrin     N2O emission    

温室气体排放量日益增加导致全球气候变暖,这一世界性话题已经成为当今学术界研究的热点。CO2、N2O和CH4是三大主要温室气体,截止到2013年5月,地球大气层中的CO2浓度已超过400μL/L,N2O的浓度已经上升至323.2nL/L,较1750年水平增长20%[1]。与CO2相比,虽然N2O在大气中的含量很低,但其单分子增温潜势却是CO2的310倍,而且由于N2O在大气中可输送到平流层,对臭氧层造成破坏[2],已经成为人类排放的首要消耗臭氧层物质,所以N2O浓度的增高已引起了广泛的关注。人类活动是造成N2O排放量增高的主要原因,其中农业生产排放的N2O占人类活动N2O排放总量的60%—75%[3]。小麦(Triticum aestivum L.)是我国重要粮食作物之一,2013年小麦播种总面积为3.6亿亩,其中冬小麦播种面积约占小麦总面积的84%和90%[4],所以冬小麦田的N2O排放量不容忽视。土壤中N2O主要是由硝化和反硝化作用产生的,反硝化细菌受到土壤中可用碳含量的影响很大,因为其以碳为能量源,所以大气CO2浓度升高促进了土壤中反硝化细菌的活跃性,从而导致N2O的排放量升高[5, 6]。第五次IPCC评估报告显示,大气CO2浓度将持续升高,预计到2050年,CO2浓度将上升到550μL/L[1]。所以,研究高CO2浓度下冬小麦田间N2O排放量以及排放规律,对于今后冬小麦生产中采用相应的耕作措施控制N2O的排放,以及对温室气体减排都会起到一定的贡献作用。

一般的硝化抑制剂是通过释放毒性化合物,直接影响硝化菌群落及硝化活性来抑制土壤硝化作用[7],而2-氯-6-三氯甲基吡啶是一种代谢灭活剂,其活性位点是吡啶环上的氮原子,通过对氨氧化细菌的竞争性抑制而对硝化作用进行抑制[8]。目前施用硝化抑制剂被认为是最有效的减排N2O技术之一,对减轻大量施肥造成的环境污染和浪费资源有重要的意义。本文利用FACE系统,研究①)CO2浓度升高是否会促进冬小麦田间N2O的排放,②) CO2浓度升高对麦田土壤N2O排放通量季节变化的影响,③) 硝化抑制剂2-氯-6-三氯甲基吡啶是否对冬小麦田间N2O排放起到抑制作用,为我国气候变化条件下农田N2O减排提供理论依据。

1 材料与方法 1.1 试验地基本概况

本试验在中国农业科学院作物科学研究所昌平实验基地进行,该试验基地位于北京市昌平区沙河镇与马池口镇交界处,地理坐标为40°10′10″—40°10′40″N,116°13′40″—116°14′04″E,基地海拔31.3m,属暖温带、半湿润大陆性季风气候,土壤为壤质褐潮土,有机质含量14.10g/kg,全氮0.82g/kg,速效磷20.0mg/kg,速效钾79.8mg/kg,土壤容重为1.30g/cm3,pH 8.33,田间最大持水量为24.9%。

1.2 试验设计

本试验采用开放式CO2浓度升高(FACE)系统,系统构成和控制同郝兴宇等的方法[9]。FACE圈的直径为4m,正八边形。圈中心设有CO2传感器和风速风向传感器,由主控计算机根据圈内CO2浓度控制气体的释放,FACE圈内CO2目标浓度为550μL/L。采取裂区试验设计,CO2浓度为主处理,硝化抑制剂为副处理,每处理3次重复。FACE圈和对照圈的CO2浓度分别为(550±60)μL/L和(400±40)μL/L;硝化抑制剂采用2-氯-6-三氯甲基吡啶(24% N-serve;施用量10m/kg)和无硝化抑制剂处理。

施氮量为188kg/hm2(其中底肥含N 118 kg/hm2,追肥含N 70 kg/hm2)、磷肥和钾肥仅作底肥,使用量分别为165 kg/hm2(P2O5)和90kg/hm2(K2O)。底肥于播种前一天(2013-10-05)施用,追肥于小麦拔节期(2014-04-18)施用。冬小麦拔节期追肥次日,首次施用硝化抑制剂,间隔30d后再次施用硝化抑制剂。供试冬小麦品种为中麦175。

1.3 测定内容及方法

试验采用静态箱法[10]进行温室气体的采集,静态箱成圆柱形,高0.15m,直径0.16m。将取气箱底座安置在选取好的试验区域内,取气时用水进行液封,以保证取气箱的密封性。

气样采集时间及方法如下,首次施用硝化抑制剂的第2天开始连续进行7d气样采集,然后每隔1周取气1次直到第2次施吡啶,重复与第1次相同的操作直到小麦成熟收获后停止取气。取气时间在10:00—12:00之间进行,扣箱抽取后0、20和40min气样,取样量30mL。同时记录箱内温度。气样返回实验室采用气相色谱仪(Agilent 7890B GC)测定分析气样中N2O的浓度。

N2O的排放通量计算公式[11]

式中,F为气体排放通量,即单位时间单位面积土壤表面的N2O排放通量(μgN m-2 h-1);K为计算N2O排放通量的单位换算系数(1.25 μgN/μL);Δc/Δt为单位时间静态箱内的N2O气体浓度变化率(mL m-3 h-1));V为取样箱的体积(m3),A为取样箱的底面积(m2);T为测定时箱体内的平均温度(℃)。

1.4 数据处理

采用SPSS 18.0 软件对数据进行统计分析,一般线性模型LSD检验法对各处理进行差异显著性检验;Excel进行图表绘制。

2 结果与分析 2.1 CO2浓度升高对麦田N2O排放通量的影响

CO2浓度升高对麦田N2O排放起到了明显的促进作用。小麦拔节至收获、施肥灌溉后7d和再次施硝化抑制剂后7d,FACE圈的N2O排放通量比对照圈平均高出67.6%、58.1%和78.7%,均达到显著水平(P<0.05)(表 1)。

表 1 CO2浓度升高对麦田N2O排放通量的影响 Table 1 Emission of N2O as affected by elevated CO2 concentration
测定时期
Experiment time
N2O排放通量 N2O flux/(μg N m-2h-1)
CO2(400±40) μL/L CO2(550±60) μL/L P
小麦拔节至收获From elongation stage to harvest 43.5±4.5 72.9±5.5 *
施肥灌溉后7d 7 days after fertilizer and irrigation application 91.0±8.8 143.8±8.8 *
再次施硝化抑制剂后7d 7 days after the second nitrapyrin application 26.4±2.4 47.1±3.6 *
*代表P<0.05,CO2浓度处理之间有显著差异
2.2 CO2浓度升高与硝化抑制剂对麦田土壤N2O排放量的影响

本试验结果表明,2-氯-6-三氯甲基吡啶的施用和其与CO2浓度升高的交互作用对麦田N2O排放都没有显著的影响,在小麦拔节至收获、施肥灌浆后7d和第2次施硝化抑制剂后7d均没有达到显著性水平(表 2)。

表 2 CO2浓度升高与硝化抑制剂对N2O排放通量影响 Table 2 Effects of elevated CO2 concentration and Nitrapyrin application on N2O emission
N2O排放量N2O flux/(μg N m-2h-1)
CO2 硝化抑制剂
Nitrification inhibitor
小麦拔节至收获
From elongation
stage to harvest
施肥灌溉后7d
7 days after fertilizer and
irrigation application
第二次施硝化抑制剂后7d
7 days after the second
nitrapyrin application
(400±40)μL/L -吡啶-Nitrapyrin 43.5±4.5 91.0±8.8 26.4±2.6
+吡啶+Nitrapyrin 37.9±4.3 87.9±8.4 26.5±4.0
(550±60)μL/L -吡啶-Nitrapyrin 72.9±5.5 143.8±8.7 47.1±3.9
+吡啶+Nitrapyrin 83.0±7.3 181.1±15.8 33.3±3.8
CO2 * * *
硝化抑制剂Nitrification inhibitor NS NS NS
CO2&硝化抑制剂CO2& Nitrification inhibitor NS NS NS
*代表P<0.05;NS代表没有显著性差异
2.3 CO2浓度升高对麦田土壤N2O排放通量季节变化的影响

N2O的排放通量从拔节到成熟的变化范围是16.4—409.1μgN m-2 h-1,排放峰出现在追肥灌溉后,随着冬小麦生育进程的推进N2O的排放量逐渐减少。追肥灌溉后7d土壤N2O排放通量平均达到293.9μgN m-2 h-1,是第2次施2-氯-6-三氯甲基吡啶后7d平均77.8μgN m-2 h-1N2O排放通量的3倍左右。

从拔节到成熟,FACE圈内的N2O排放通量比对照圈内的N2O排放通量平均增高67.6%(P<0.05)(图 1),说明CO2浓度升高显著促进土壤N2O的排放。硝化抑制剂2-氯-6-三氯甲基吡啶对N2O的排放没有显著的影响。CO2浓度与2-氯-6-三氯甲基吡啶交互作用对麦田土壤N2O排放通量的影响,没有达到显著性水平。

图 1 冬小麦拔节后各处理土壤N2O排放量的季节变化 Fig. 1 The emission of N2O with and without Nitrapyrin application since the elongation stage of winter wheat
3 结论与讨论

(1)CO2浓度升高促进冬小麦田间N2O排放(增幅为67.6%),该结论与许多研究成果一致,Ineson等利用瑞士FACE试验系统研究发现,高CO2浓度下C3作物多年生黑麦草地的N2O排放量升高了27%[12]。Lam等研究发现,大气CO2浓度升高显著促进了冬小麦田间N2O的排放,增幅达到60%[13-15]。同时也有研究表明,大气CO2浓度升高对高粱田间N2O的排放量没有明显影响,因为高粱为C4作物对大气CO2浓度变化的响应没有C3作物的响应强烈[16],由此可见,在C4作物田间土壤中,反硝化细菌可利用的碳输入在高CO2浓度条件下没有显著增加。Kettunen等研究发现,土壤N2O的排放量随着作物生长而降低,原因是作物生长对土壤中N素的吸收量增加,有可能减少土壤中无机氮的含量进而降低土壤的硝化和反硝化能力[17]。不同试验结果的产生,可能与各试验中高CO2浓度处理的时间长度有关,长时间或短时间排放高浓度CO2对作物田间N2O排放量的影响不同。此外,土壤原位测定表明,大气CO2浓度升高降低了土壤0—20cm剖面中N2O的产生,从而减少了土壤N2O的排放[18]

CO2浓度升高促进冬小麦田间N2O排放的原因有以下几种可能,1)CO2浓度升高影响土壤微生物,Klemedtsson研究发现,大气CO2浓度升高刺激作物生长[19],增加了有机质向土壤输入,特别是根际有机碳的积累增加,并且影响作物与田间土壤的C、N循环,促进了微生物的活性并获得更多的碳源作为反硝化作用所需能量,从而增强了土壤微生物的反硝化强度,促进了N2O的排放[20]。采用OTC研究发现,大气CO2浓度升高,能增加土壤的pH促进土壤中硝化细菌活性提高NH4+-N转化成NO3--N的速率,从而促进N2O排放[21]。2)CO2浓度升高使温度相应增高,温度是土壤N2O排放通量规律性日变化的最主要控制因素。3)Mosier研究认为,大气CO2浓度升高提高作物对水分的利用率而保持土壤湿润,促进土壤的反硝化作用[22],从而有可能导致土壤N2O排放增加。

(2)N2O排放通量季节变化结果显示,追肥灌溉后N2O排放量较大,随着冬小麦生育进程的推进N2O的排放量逐渐减少,这是由于施肥后土壤外源N素含量急剧增加,土壤中硝化细菌可利用N素含量升高,养分充足提高了微生物活性促进田间N2O的排放;Kettunen等研究发现,土壤高N2O排放与土壤中可利用氮的含量成正相关[17]。Hall和Matson研究也发现,土壤N2O排放对外源氮输入非常敏感,随着外源氮的增加,N2O排放量增加的速度快于线性增加[23]。此外,作物生长初期对土壤中N的竞争力不强,土壤中的大部分N被硝化细菌利用加速了硝化和反硝化作用的发生,而作物生长发育越旺盛对土壤中N的竞争吸收能力就越强,使土壤中硝化细菌可利用原料减少,N2O的产生和排放速率降低[24],所以在作物生长初期田间N2O排放量较高。灌溉后土壤平均湿度为15.9%,比第二次施硝化抑制剂期的土壤平均湿度高出6.9%。N2O排放通量与土壤水分含量成正比[25],从而灌溉期N2O的排放通量高。

(3)施硝化抑制剂2-氯-6-三氯甲基吡啶对麦田N2O的排放量无显著影响。相似结果López研究表明,在相对较高NH4+-N含量的土壤中硝化抑制剂的施用对硝化作用不产生抑制效应,这与氨氧化菌群落与数量和活性受到铵态氮含量高低的影响有关[26]。众多研究表明,硝化抑制剂的施用对减少温室气体N2O排放效果显著,而本试验的研究结果与之相反,产生这种结果的原因可能是,硝化抑制剂的施用效果受到土壤质地类型、有机质含量、硝化抑制剂种类等多种因素的综合影响[27]。其中主要有两点,首先,土壤中只有未受到扰动团聚体表面的活性硝化细菌才能够氧化NH4+-N,但是活性硝化细菌受到土壤微域一定程度的保护,导致硝化抑制剂对硝化菌活性的抑制效果下降[28];不同质地土壤中的硝化菌群落对硝化抑制剂的敏感程度不同,因此,硝化抑制剂在不同质地土壤上的施用效果变异很大。其次,硝化抑制剂种类本身的原因,试验采用2-氯-6-三氯甲基吡啶作为硝化抑制剂,由于甲基吡啶的水溶性较低、极性较弱,因此,容易被土壤中的腐植酸吸附[8];此外硝化细菌由于受到土壤微域的保护对甲基吡啶不敏感,所以甲基吡啶对硝化细菌的抑制作用不强。

未来大气CO2浓度升高导致冬小麦田间N2O的排放量增大。因此,控制田间N2O的排放对于降低农业生产温室气体排放量至关重要,必须通过进一步系统的研究来降低冬小麦生产乃至整个农业系统所产生的N2O等温室气体,为全球环境和农业可持续发展贡献力量。农业生产中硝化抑制剂的施用,对于田间N2O排放的影响作用受多种外界因素的影响表现复杂,硝化抑制剂的施用方法和配套技术值得深入研究。

致谢: 中国农业科学院农业环境与可持续发展研究所农业部农业环境重点实验室对试验平台提供技术支持,居辉、郭李萍、郝兴宇、高霁老师对研究工作给予帮助,姜厚竹、李靖涛、王晨光、曹刚、佘星星帮助试验操作,特此致谢。
参考文献
[1] IPCC. Summary for Policymakers of Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[2] Baggs E M, Richter M, Hartwig U A, Cadisch G. Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE)[J]. Global Change Biology , 2003, 9 (8) : 1214–1222. DOI:10.1046/j.1365-2486.2003.00654.x
[3] 米松华. 我国低碳现代农业发展研究——基于碳足迹核算和适用性低碳技术应用的视角[D]. 杭州: 浙江大学, 2013.
[4] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2013437–437.
[5] Welzmiller J T, Matthias A D, White S, Thompson T L. Elevated carbon dioxide and irrigation effects on soil nitrogen gas exchange in irrigated Sorghum[J]. Soil Science Society of America Journal , 2008, 72 (2) : 393–401. DOI:10.2136/sssaj2007.0033
[6] 张玉铭, 胡春胜, 董文旭, 陈德立, 张佳宝. 农田土壤N2O生成与排放影响因素及N2O总量估算的研究[J]. 中国生态农业学报 , 2004, 12 (3) : 119–123.
[7] 刘倩. 硝化抑制剂对土壤的硝化抑制效应及其微生物作用机理[D]. 石河子: 石河子大学, 2011.
[8] Jacinthe P A, Pichtel J R. Interaction of nitrapyrin and dicyandiamide with soil humic compounds[J]. Soil Science Society of America Journal , 1992, 56 (2) : 465–470. DOI:10.2136/sssaj1992.03615995005600020021x
[9] 郝兴宇, 林而达, 杨锦忠, 居辉, 马占云, 韩雪, 王贺然, 杨万深. 自由大气CO2浓度升高对夏大豆生长与产量的影响[J]. 生态学报 , 2009, 29 (9) : 4595–4603.
[10] Datta A, Das S, Manjunath K R, Adhya T K. Comparison of two methods for the estimation of greenhouse gas flux from rice ecosystems in India[J]. Greenhouse Gas Measurement and Management , 2012, 2 (1) : 43–49. DOI:10.1080/20430779.2012.699771
[11] Ruser R, Flessa H, Schilling R, Steindl H, Beese F. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields[J]. Soil Science Society of America Journal , 1998, 62 (6) : 1587–1595. DOI:10.2136/sssaj1998.03615995006200060016x
[12] Ineson P, Coward P A, Hartwig U A. Soil gas fluxes of N2O, CH4 and CO2: The Swiss free air carbon dioxide enrichment experiment[J]. Plant and Soil , 1998, 198 (1) : 89–95. DOI:10.1023/A:1004298309606
[13] Lam S K, Lin E D, Norton R, Chen D. The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China[J]. Soil Biology & Biochemistry , 2011, 43 (2) : 458–461.
[14] Lam S K, Chen D, Norton R, Armstrong R, Mosier A R. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta-analysis[J]. Global Change Biology , 2012, 18 (9) : 2853–2859. DOI:10.1111/j.1365-2486.2012.02758.x
[15] Lam S K, Chen D, Norton R, Armstrong R, Mosier A R. Influence of elevated atmospheric carbon dioxide and supplementary irrigation on greenhouse gas emissions from a spring wheat crop in southern Australia[J]. The Journal of Agricultural Science , 2013, 151 : 201–208. DOI:10.1017/S002185961200055X
[16] De Luis I, Irigoyen J J, Sánchez-Díaz M. Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water stress[J]. Physiologia Plantarum , 1999, 107 (1) : 84–89. DOI:10.1034/j.1399-3054.1999.100112.x
[17] Kettunen R, Saarnio S, Martikainen P, Silvola J. Elevated CO2 concentration and nitrogen fertilization effects on N2O and CH4 fluxes and biomass production of Phleum pretense on farmed peat soil[J]. Soil Biology & Biochemistry , 2005, 37 (4) : 739–750.
[18] 徐仲均, 王迎红, 徐星凯, BoeckxP, Van CleemputQ, 朱建国, 王跃思. 高浓度CO2处理后土壤N2O排放特征[J]. 农业环境科学学报 , 2008, 27 (5) : 1866–1869.
[19] Klemedtsson L, Svensson B H, Rosswall T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil[J]. Biology and Fertility of Soils , 1988, 6 (2) : 112–119.
[20] 徐仲均. 大气CO2浓度升高对稻-麦轮作农田温室气体排放影响的研究[D]. 北京: 中国农业科学院, 2005.
[21] Carnol M, Hogenboom L, Jach M E, Remacle J, Ceulemans R. Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification[J]. Global Change Biology , 2002, 8 (6) : 590–598. DOI:10.1046/j.1365-2486.2002.00493.x
[22] Mosier A R, Pendall E, Morgan J A. Effect of water addition and nitrogen fertilization on the fluxes of CH4,CO2, NOX,and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe[J]. Atmospheric Chemistry and Physics , 2003, 3 : 1703–1708. DOI:10.5194/acp-3-1703-2003
[23] Hall S J, Matson P A. Nitrogen oxide emissions after nitrogen additions in tropical forests[J]. Nature , 1999, 400 (6740) : 152–155. DOI:10.1038/22094
[24] 宋涛, 郑循华, 王跃思, 徐仲均, 韩圣慧, 朱建国. 开放式空气CO2浓度增高试验中的NO和N2O地-气交换观测研究[J]. 应用生态学报 , 2002, 13 (10) : 1264–1268.
[25] 张岳芳, 陈留根, 王子臣, 朱普平, 盛婧, 郑建初. 耕作方式对太湖地区冬小麦生长季N2O排放的影响[J]. 生态环境学报 , 2011, 20 (8/9) : 1326–1331.
[26] López N I, Austin A T, Sala O E, Méndeza B S. Controls on nitrification in a water-limited ecosystem: Experimental inhibition of ammonia-oxidising bacteria in the Patagonian steppe[J]. Soil Biology and Biochemistry , 2003, 35 (12) : 1609–1613. DOI:10.1016/j.soilbio.2003.08.005
[27] 孙志梅, 武志杰, 陈利军, 马星行. 硝化抑制剂的施用效果、影响因素及其评价[J]. 应用生态学报 , 2008, 19 (7) : 1611–1618.
[28] Neufeld J D, Knowles R. Inhibition of nitrifiers and methanotrophs from an agricultural humisol by allylsulfide and its implications for environmental studies[J]. Applied and Environmental Microbiology , 1999, 65 (6) : 2461–2465.